

Molecular and Hybrid Imaging : Ready for clinical use?

Valeria Paradies, MD, MSc

Interventional Cardiologist and Director of Research Department Maasstad Hospital-PhD candidate Erasmus Medical Centre EAPCI Chair Gender and Disparities Committee

Adaptive Intimal Thickening

Pathologic Intimal Thickening

Smooth muscle cells and proteoglycans *Extracellular lipid (lipid pool)* +/- luminal macrophages SMC muscle cell death (apoptosis)

Microcalcifications

Macrophages

Potential for regression

"Fatty Streak"

"Early Stages of Atherosclerosis Development"

Early Necrotic Core

Macrophages (CD 68+) within the lipidic pool

Inflammation T cell

Fibroatheroma

Necrotic core +/- calcification

Hemorrhage (red cell membrane)

ACS

Can We Identify Vulnerable Plaque?

Vulnerable Plaque and risk of Events??

PROSPECT- VH-TFCA and Non Culprit Lesion Related Events

NCLs in ACS patients with ≥30% DS and ≥40% plaque burden MACE occurred in 20% of pts at median 3.4-year FU

Lesion hazard ratio (95% CI)	3.90 (2.25-6.76)	6.55 (3.43-12.51)	10.83 (5.55-21.10)	11.05 (4.39-27.82)
P value	< 0.001	<0.001	<0.001	<0.001
Prevalence (%)	46.7	15.9	10.1	4.2

COMBINE: TFCA and adverse events in FFR negative lesion

In diabetic patients, TCFA-represents 25% of FFR negative lesions and is associated with a five-fold higher rate of MACE despite the absence of ischaemia

Lipid rich lesions detected by NIRS and adverse events

Total lipid content assessed by LCBI

Single non culprit lesion with max LCBI 4mm≥400

Madder et al. EHJ Cardiovasc Imaging 2016

Karlsson et al. Open Heart 2019

PROSPECT II-Lipid rich lesions detected by NIRS and adverse events

NCLs in ACS patients with ≥30% DS and ≥40% plaque burden MACE occurred in 14.4% of pts at median 3.7-year FU

PROSPECT- Modest prognostic value for Vulnerable Plaque

Table 1. Predictive Performance of Plaque Characteristics											
		Event Rate, % (n/N)*									
	Endpoint	+ Lesion Variable	- Lesion Variable	OR*	Sn	Sp	PPV	NPV	LR+	LR-	AUC (95% CI)
Lesion-specific											
PB ≥70%	NCL MACE	8.7% (25/288)	1.0% (30/2941)	9.55	0.46	0.92	9%	99%	5.59	0.59	0.82 (0.76–0.87)
MLA \leq 4.0 mm ²	NCL MACE	4.9% (30/616)	1.0% (25/2522)	5.11	0.55	0.81	5%	99%	2.87	0.56	0.75 (0.67–0.82)
TCFA	NCL MACE	4.4% (26/595)	1.2% (25/2114)	3.82	0.51	0.79	4%	99%	2.38	0.62	0.71 (0.62–0.79)
$PB \ge 70\% + MLA \le 4.0 \text{ mm}^2 + \text{TCFA}$	NCL MACE	18.2% (8/44)	1.6% (43/2665)	13.55	0.16	0.99	18%	98%	11.58	0.85	0.86 (0.76–0.92)
DS \geq 50% (by QCA)	NCL MACE	10.7% <mark>(</mark> 36/336)	2.5% (37/1488)	4.71	0.49	0.83	11%	98%	2.88	0.61	0.74 (0.67–0.80)
Patient-specific											
NCL (DS ≥30% by visual estimation)	CL + NCL MACE	20.7% (125/604)	7.5% (7/93)	3.2	0.95	0.15	21%	92%	1.12	0.35	0.69 (0.56–0.79)
	NCL MACE	12.3% (74/604)	0% (0/93)	NR	1.00	0.15	12%	100%	1.18	0.00	NR
PB ≥70%	NCL MACE	19.1% (42/220)	7.0% (31/440)	3.11	0.58	0.70	19%	93%	1.90	0.61	0.68 (0.60–0.75)

Data to evaluate lesion-specific risk estimates for SLP and NCL, and patient-specific risk estimates for MLA, TCFA, and DS \geq 50% were not available. *Event rates and odds ratios are not based on Kaplan-Meier estimates.

AUC = area under the receiver-operator curve; CI = confidence interval; CL = culprit lesion; DS = diameter stenosis; LR = negative likelihood ratio; LR = positive likelihood ratio; MACE = major adverse cardiac events; MLA = minimum luminal area; NCL = nonculprit lesion; NPV = negative predictive value; NR = not reportable; OR = odds ratio; PB = plaque burden; PPV = positive predictive value; Sn = sensitivity; Sp = specificity; SLP = substantial lesion progression; TCFA = thin-cap fibroatheroma.

PROSPECT-Modest prognostic value for Vulnerable Plaque Potential explanations

> IVUS resolution inadequate for plaque characteristics

> No repeat IVUS evaluation: plaque evolves

> TFCA does not necessarily cause ACS and 25% of ACS are caused by erosion

Inflammatory infiltrate cannot be detected by structural imaging nor by NIRS

The case for molecular imaging?

Inflammation drives atherogenesis and plaque rupture

Structural imaging not yet robust enough for prediction

> Molecular imaging of inflammation will improve risk prediction beyond structural imaging

Near-Infrared Fluorescence (NIRF) Imaging:

Shedding light onto live molecular targets

 \downarrow photon attenuation (more light penetration)

 \downarrow autofluorescence enables in vivo imaging

 \rightarrow Visualize in vivo atheroma inflammation

NIRF for Lipid-Rich, Inflamed Atherosclerotic Plaques Indocyanine Green

Vinegoni et al. at Med 2003

NIRF for Lipid-Rich, Inflamed Atherosclerotic Plaques Prosense VM110

2D NIRF-IVUS

2D NIRF-OCT

Conclusions-The case for molecular imaging

> NIRF imaging provides high-resolution quantification of plaque inflammation

> NIRF is ready to translate and synergize with structural imaging for risk prediction

High resolution imaging of coronary vulnerable plaque: ready to translate into clinical practice?

Thank you

Valeria Paradies, MD, MSc

Interventional Cardiologist and Director of Research Department Maasstad Hospital-PhD candidate Erasmus Medical Centre EAPCI Chair Gender and Disparities Committee

PROSPECT- VH-TFCA and Non Culprit Lesion Related Events

PROSPECT: VH-TCFA and Non Culprit Lesion Related Events

COMBINE (OCT-FFR) Trial

OCT was performed in 390 pts with diabetes and an intermediate lesion with a visually estimated DS ≥40% - ≤80% with FFR >0.80 (mean 0.88). 24% ACS, 76% SIHD.
98 (25.1%) Isns were a TCFA* with median FC thickness of 60 (56, 63) μm. Rx'd w/GDMT.
Primary MACE Endpoint = CD, TVMI, CD-TLR, or hospitalization for UA at 18 mo.

PROPSECT: Modest Prognostic Value for VP

	Endpoint	Event Rate	e, % (n/N)*	l)*							
		+ Lesion Variable	- Lesion Variable	OR*	Sn	Sp	PPV	NPV	LR+	LR-	AUC (95% CI)
Lesion-specific											
PB ≥70%	NCL MACE	8.7% (25/288)	1.0% (30/2941)	9.55	0.46	0.92	9%	99%	5.59	0.59	0.82 (0.76-0.87
MLA \leq 4.0 mm ²	NCL MACE	4.9% (30/616)	1.0% (25/2522)	5.11	0.55	0.81	5%	99 %	2.87	0.56	0.75 (0.67-0.82)
TCFA	NCL MACE	4.4% (26/595)	1.2% (25/2114)	3.82	0.51	0.79	4%	99%	2.38	0.62	0.71 (0.62-0.79)
$\begin{array}{l} PB \geq \!\! 70\% + MLA \leq \!\! 4.0 \ mm^2 \\ + \ TCFA \end{array}$	NCL MACE	18.2% (8/44)	1.6% (43/2665)	13.55	0.16	0.99	18%	98%	11.58	0.85	0.86 (0.76-0.92)
DS ≥50% (by QCA)	NCL MACE	10.7% (36/336)	2.5% (37/1488)	4.71	0.49	0.83	11%	98%	2.88	0.61	0.74 (0.67-0.80)
Patient-specific											
NCL (DS ≥30% by visual estimation)	CL + NCL MACE	20.7% (125/604)	7.5% (7/93)	3.2	0.95	0.15	21%	92%	1.12	0.35	0.69 (0.56–0.79)
	NCL MACE	12.3% (74/604)	0% (0/93)	NR	1.00	0.15	12%	100%	1.18	0.00	NR
PB ≥70%	NCL MACE	19.1% (42/220)	7.0% (31/440)	3.11	0.58	0.70	19%	93%	1.90	0.61	0.68 (0.60-0.75

on Kaplan-Meier estimates. AUC = area under the receiver-operator curve; CI = confidence interval; CL = culprit lesion; DS = diameter stenosis; LR = negative likelihood ratio; LR + = positive likelihood ratio; MACE = major

adverse cardiac events; MLA = minimum luminal area; NCL = nonculprit lesion; NPV = negative predictive value; NR = not reportable; OR = odds ratio; PB = plaque burden; PPV = positive predictive value; Sn = sensitivity; Sp = specificity; SLP = substantial lesion progression; TCFA = thin-cap fibroatheroma.

--GW Stone et al. N Engl J Med 2011; 364:226-235

• IVUS-VH predictive -- but sensitivity and positive predictive values are limited. Even with all 3 parameters present: PPV is only 18%.

--S Kaul and G Diamond, JACC CV Imaging 2012; 5:S106-S110

The Case for Molecular Imaging

- Inflammation drives atherogenesis and plaque rupture -Libby et al. *Nature* 2011 473:317-25; Tabas, Glass *Science* 2013;339:166-172
- Structural imaging not yet robust enough for prediction
- To improve risk prediction (ROC/NRI): Uncorrelated biomarkers, or new dimensions of information needed --TJ Wang. Circulation 2011;123:551-565
- We hypothesize that molecular imaging of inflammation will improve risk prediction beyond structural imaging.

molecular imaging of inflammation will improve risk prediction beyond structural imaging.

Targeted Molecular Imaging: Closer to Clinical

- NIRF imaging provides high-resolution quantification of plaque inflammation
- NIRF ready to translate and synergize with structural imaging for risk prediction
- High-resolution imaging of coronary VP: Intravascular NIRF-OFDI, and soon NIRF-IVUS ready to translate
- ICG and new clinical NIRF agents will accelerate intravascular NIRF imaging trials

Basis for Coronary Molecular Imaging

- Coronary plaque and stent complications remain leading causes of morbidity and mortality worldwide
- Pathobiology drives arterial disease and the design of molecular therapeutics, but is not visible to clinical structural imaging
- Structural imaging of high-risk plaques (e.g. PROSPECT IVUS-VH) currently do not predict risk well enough to enable clinical action (PPV of only 18% to predict ACS by 3 yrs).¹
- Molecular imaging of coronary plaque biology offers a new approach to understand drivers of plaque and stent complications²

¹Stone GW et al. *NEJM* 2011;364:226-35 ²Mulder WJ, Jaffer FA, Fayad ZA, Nahrendorf M. *Sci Transl Med* 2014

Dual-modal NIRF-optical coherence tomography single catheter imaging of atheroma inflammation

HEART CENTER

• Prosense VM110 injected 24h before

NIRF-OCT molecular-structural imaging reveals heterogeneous plaque inflammatory protease activity

-- Yoo, Kim, Jaffer, Tearney et al. Nature Medicine 2011

- OCT = optical coherence tomography, FDA-approved
- Rabbit aortic atheroma
- Prosense VM110 i.v. 1 day before
- 3D OCT rendered
- NIRF signal surface rendered (nM NIR fluorescence)

IVUS-NIRF Structural-Molecular Imaging

- NIRF+IVUS, the most prevalent intracoronary imaging approach
- Through-blood imaging, no flushing required
- Requires correction of NIRF signal attenuation through blood

-- Bozhko, Osborn..Jaffer, Ntziachristos, EHJ CV imaging 2017

Near-Infrared Fluorescence (NIRF) Imaging: High-Resolution Pathway To The Coronary Arteries

- <u>Optical imaging is Clinical</u>: OCT/OFDI, NIRS, Angioscopy
- <u>NIR window for fluorescence</u>: ↓photon attenuation (more light penetration); and ↓autofluorescence enables *in vivo* imaging
- <u>NIRF Molecular Agents</u>: Clinical emerging: *ICG*, Prosense VM110, IR800-based

--Weissleder, Ntziachristos Nat Med 2003

-Circulation 2007; ATVB 2009; Sci Trans Med 2011; Nat Med 2011; JACC CV imaging (in press)

Standalone NIRF 2D and IVUS of Plaque Inflammatory Protease Activity, Through Blood

Dual-modal NIRF-OFDI single catheter quantitative imaging of atheroma inflammation

- NZW rabbit +PTCA +HL
- Saline-flush; 5 mm/second pullback
- Prosense VM110 injected 24h before

--Yoo, Kim....Jaffer, Tearny *Nature Medicine* 2011 -- Jin Won Kim, Hongki Yoo et al. AHA 2011

Conclusion

- NIRS-IVUS is an easy to use way to identify a vulnerable plaque
- On a patient level four studies have shown prospective validity
- Prospective segment level studies are ongoing