"Lifetime management" nella stenosi aortica

Tullio Palmerini
Alma Mater Studiorum, University of Bologna
Italy

Life time management of SVAo stenosis: do we have the right equation?

Age of patients at first implant

Patient life expectancy

Valve durability

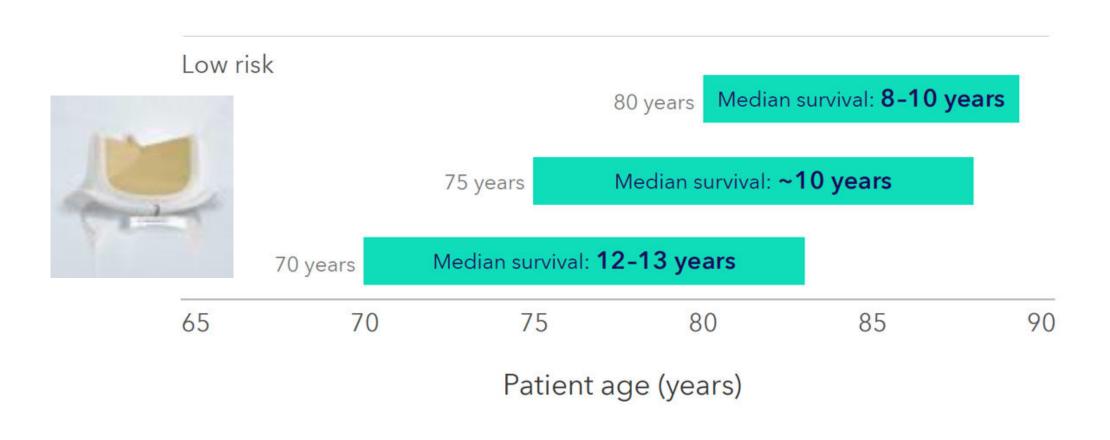
Procedure repeatibility

N of redo

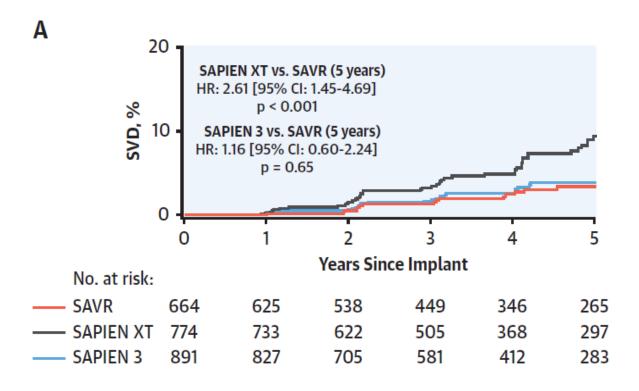
Type of redo

Coronary reaccess

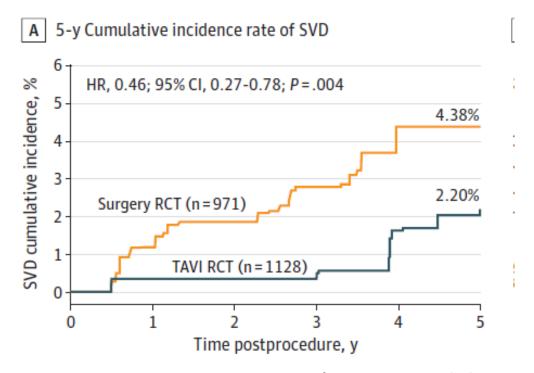
Risk of coronary obstruction


$$\frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4k)!(1103 + 26390k)}{(k!)^4 396^{4k}}$$

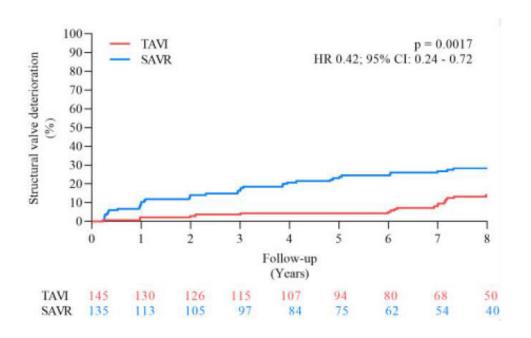
Life expectancy in the world in 2022



SWEDHEART REGISTRY


8,353 patients with SVAo stenosis undergoing SAVR age≥ 60 yeras

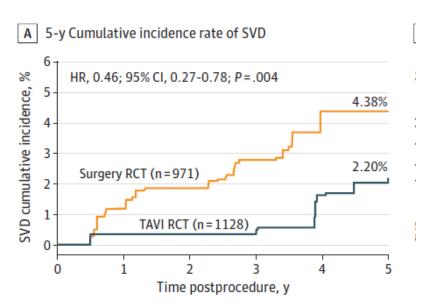
Valve durability: 5 year follow up



Pibarot et al; JACC 2020

O'Hair; JAMA Cardiol 2023

Valve durability beyond 5 years

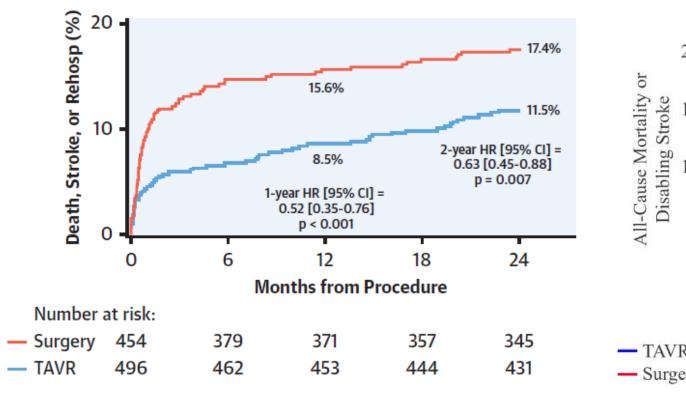

First Author (Ref. #)	тну	N	Number of Patients Alive at Median Follow-Up	Median Follow-Up	Findings
Barbanti et al. (49)	CoreValve (n = 238) SAPIEN XT (n = 48)	288	19	8 yrs	BVF: 4.5% Moderate SVD: 5.8% Severe SVD: 2.3% Freedom from BVF and severe SVD at 8 yrs: 95%
Panico et al. (50)	CoreValve (n $=$ 278)	278	68	6.8 yrs	BVF: 2.5% Moderate/severe SVD: 3.6% Freedom from BVF at 6.8 yrs: 97.5%
Holy et al. (51)	CoreValve (n = 152)	152	6	8 yrs	BVF: 4.5% Severe SVD: 0% Freedom from BVF at 8 yrs adjusted for mortality: 92.1%
Blackman et al. (52)	CoreValve (n = 149) SAPIEN XT (n = 35) SAPIEN (n = 45)	241	44 alive at 8 yrs	5.8 yrs with maximum of 8 yrs follow-up	BVF: 0.4% Moderate SVD: 8.7% Severe SVD: 0.4% Freedom from SVD at 5.8 yrs: 91%
Murray et al. (53)	CoreValve (n = 41) SAPIEN (n = 60)	103	79	7 yrs	BVF: 3.8% Moderate SVD: 8.9% Severe SVD: 1.3% Freedom from SVD at 7 yrs: 91%
Deutsch et al. (54)	CoreValve (n = 214) SAPIEN (n = 86)	300	69	7 yrs	BVF: 3.6% Moderate/severe SVD: 14.9% Freedom from SVD at 7 yrs: 77% (SVD with CoreValve was 11.8% vs 22.6% with SAPIEN; p = 0.01)

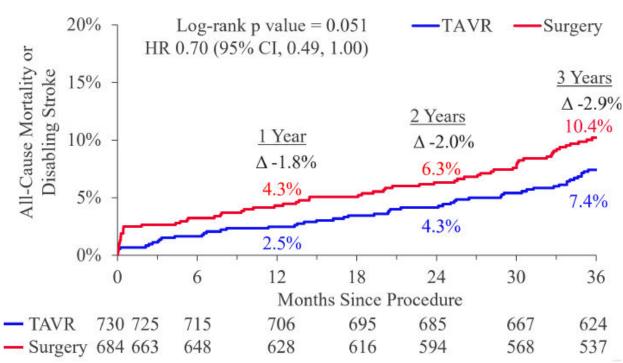
Jorgensen et al; EHJ 2021

Yerasi et al; JACC Int 2021

					•		•
	Country \$	70	80	90	Male ‡	Female \$	Both sexes *
1	Hong Kong				82.38	88.17	85.29
2	Japan				81.91	88.09	85.03
3	Switzerland				82.42	86.02	84.25
4	Singapore				82.06	86.15	84.07
5	Italy				81.90	85.97	84.01
6	Spain				81.27	86.68	83.99
7	Australia				82.08	85.80	83.94
8	Iceland				82.15	84.90	83.52
9	South Korea				80.46	86.42	83.50
10	Israel				81.98	84.91	83.49
11	Sweden				81.69	84.97	83.33
12	France				80.32	85.82	83.13
13	Malta				81.37	84.68	83.06
14	Canada		_		81.15	84.74	82.96
15	Norway		_		81.11	84.78	82.94
16	Ireland				81.29	84.32	82.81
17	New Zealand				81.20	84.38	82.80

Age at first AVR

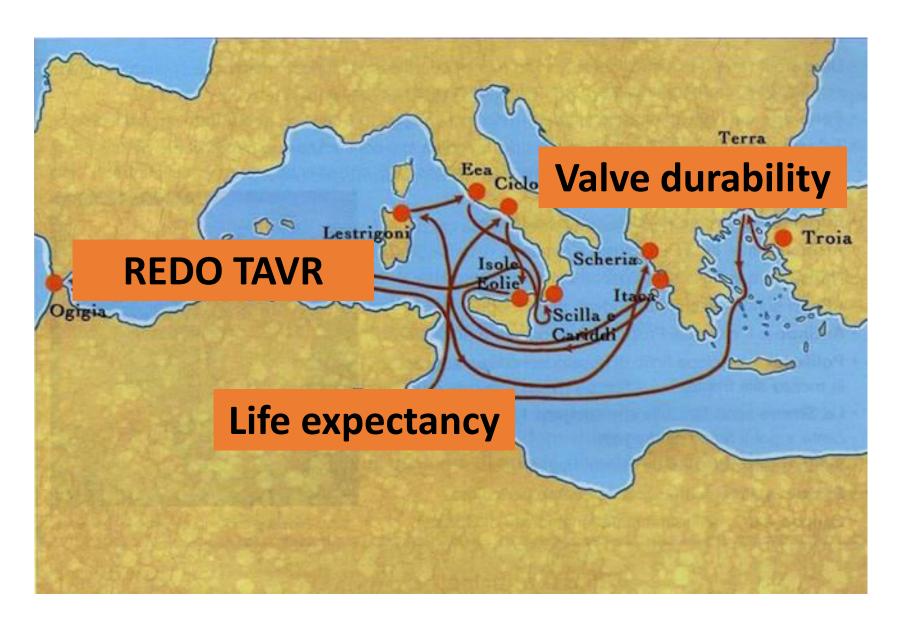


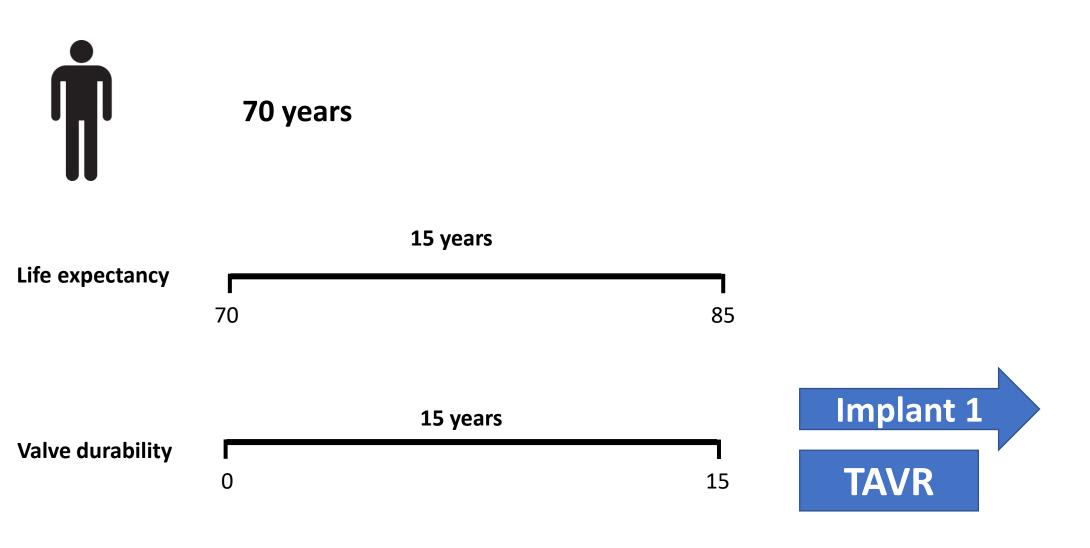

Implant 1
TAVR

TAVI in younger patients

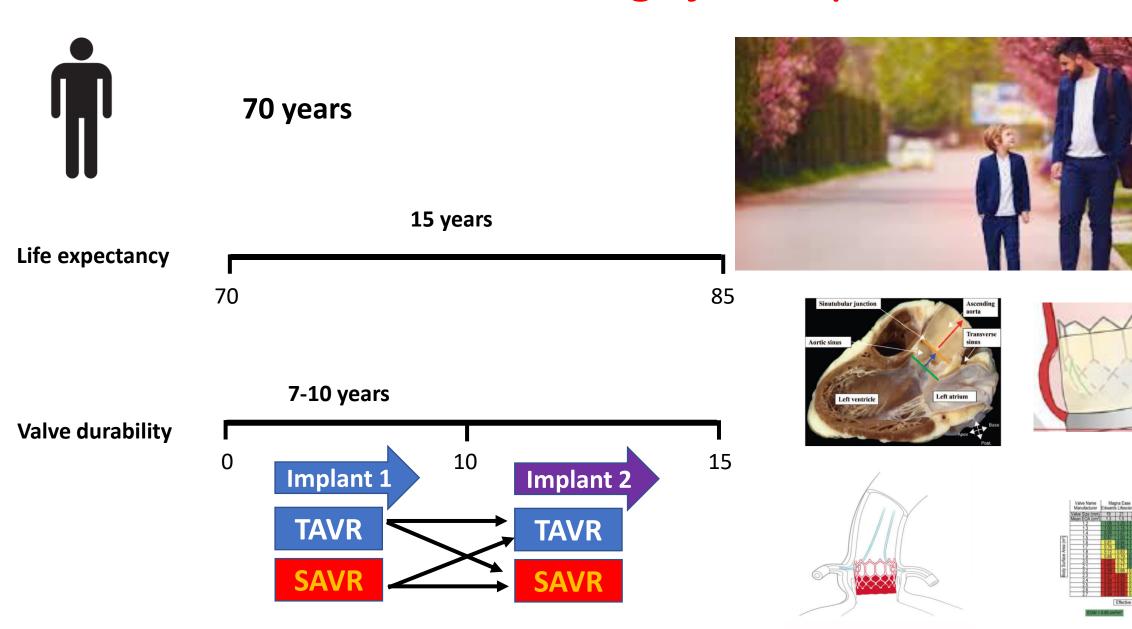
PARTNER 3

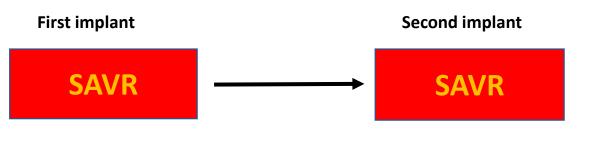
EVOLUTE LOW RISK




Leon et al; JACC 2021

Forrest et al; JACC 2023


An undetermined journey



A one-stage journey

A two-stage journey

Contemporary operative mortality in re-AVR is 4% to 9% in reports from large-volume institutions

Contemporary Outcomes of Repeat Aortic Valve Replacement: A Benchmark for Transcatheter Valve-in-Valve Procedures

Tsuyoshi Kaneko, MD, Christina M. Vassileva, MD, Brian Englum, MD, Sunghee Kim, PhD, Maroun Yammine, MD, Matthew Brennan, MD, MPH, Rakesh M. Suri, MD, DPhil, Vinod H. Thourani, MD, Jeffrey P. Jacobs, MD, and Sary Aranki, MD

Division of Cardiac Surgery, Brigham and Women's Hospital, Boston, Massachusetts; Division of Cardiothoracic Surgery, Southern Illinois University School of Medicine, Springfield, Illinois; Division of Cardiothoracic Surgery, Duke Clinical Research Institute, and Division of Cardiology, Duke University Medical Center, Durham, North Carolina; Department of Cardiac Surgery, Mayo Clinic, Rochester, Minnesota; Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, Georgia; and Division of Cardiothoracic Surgery, Johns Hopkins All Children's Heart Institute, St. Petersburg, Florida

Table 3. Postoperative Outcome for Reoperative Aortic Valve Replacement Versus Primary Aortic Valve Replacement

Variable ^a		Previous AVR + Current AVR $(n = 3,380)$	Primary AVR $(n = 54,183)$	p Value
Outcomes				
Operative mortality		157 (4.6)	1,200 (2.2)	<.0001
Expected mortality, %		5.4	2.7	
Observed-to-expecte	d ratio	0.86	0.81	
Composite, operative			6,369 (11.8)	<.0001
Stroke	Eta med	dia 66 anni	761 (1.4)	0.020
Renal failure		/	1,339 (2.5)	<.0001
Pacemaker placement		370 (11.0)	2,337 (4.3)	<.0001
Re-op for bleeding/tamponade		133 (3.9)	1,755 (3.2)	0.028
Vascular complication		2 (0.06)	7 (0.01)	0.037
Post-op aortic insufficiency mild or greater		96 (2.8)	902 (1.7)	<.0001
Post-op atrial fibrillation		626 (18.5)	15,739 (29.1)	<.0001
Post-op blood transfusion		1,814 (53.7)	20,692 (38.2)	<.0001
		(n = 3,236)	(n = 53,204)	
Post-op length of stay,	d	7 (5–10)	6 (5–8)	<.0001

Open access Cardiac surgery

openheart Surgical Complexity and Outcome of

Età media 51 anni

Renata Greco, ¹ Mirko Muretti ¹ , ¹ Jasmina Djordjevic, ¹ Xu Yu Jin ¹ , ^{2,3} Elaine Hill, ⁴ Maurizio Renna, ⁴ Mario Petrou ⁵

Acquired Cardiovascular Disease

Chan et al

Long-term evaluation of biological versus mechanical prosthesis use

at reo

Vincent (

Età media 58 anni

ID, a Paul Hendry, MD, a

Roy Masters, MD," Thierry G. Mesana, MD, PhD," and Marc Ruel, MD, MPHa,b

Reoperation is not an independent predictor of mortality during Età media 59 anni

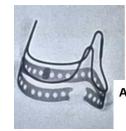
Piroze M. Davierwala, MD, Michael A. Borger, MD, PhD, Tirone E. David, MD, Vivek Rao, MD, PhD, Manjula Maganti, MSc, and Terrence M. Yau, MD, MSc

Small aortic root Shallow sinuses Low coronary ostia

First implant


Second implant

(aortic root enlargement)

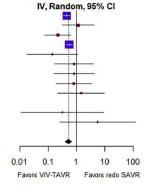


PARTNER 2 registry

32.7%

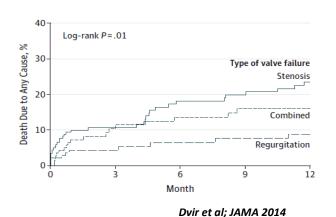
12 studies with 16,207 pts

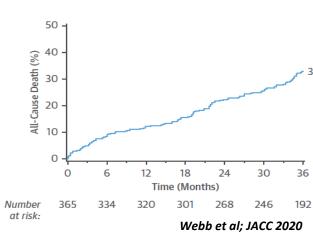
Vfit twechnology


Y-incision

Rectangular patch

Large BHV


Odds Ratio Weight IV, Random, 95% CI Study Deharo 2020 0.45 [0.34; 0.60] Woitek 2020 1.14 [0.31; 4.16] Tam 2020 0.22 [0.08; 0.63] Hirji 2020 0.55 [0.42; 0.72] Malik 2020 1.4% 0.14 [0.02; 1.05] Sedeek 2019 0.82 [0.17; 3.99] 2.2% Silaschi 2017 0.82 [0.16; 4.22] 2.0% 0.79 [0.19; 3.27] Spaziano 2017 2.7% Grubitzsch 2017 1.44 [0.22; 9.41] 1.6% Santarpino 2016 0.0% Eijofor 2016 0.5% 0.32 [0.01; 9.19] 5.41 [0.25; 116.32] Erlebach 2015 0.6%

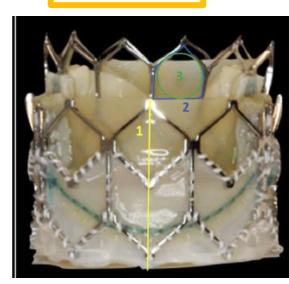

100.0% 0.52 [0.39; 0.68] Heterogeneity: $Tau^2 = 0.0164$; $Chi^2 = 11.16$, df = 10 (P = 0.345); $I^2 = 10\%$ Test for overall effect: $t_{10} = -5.39$ (P < 0.001)

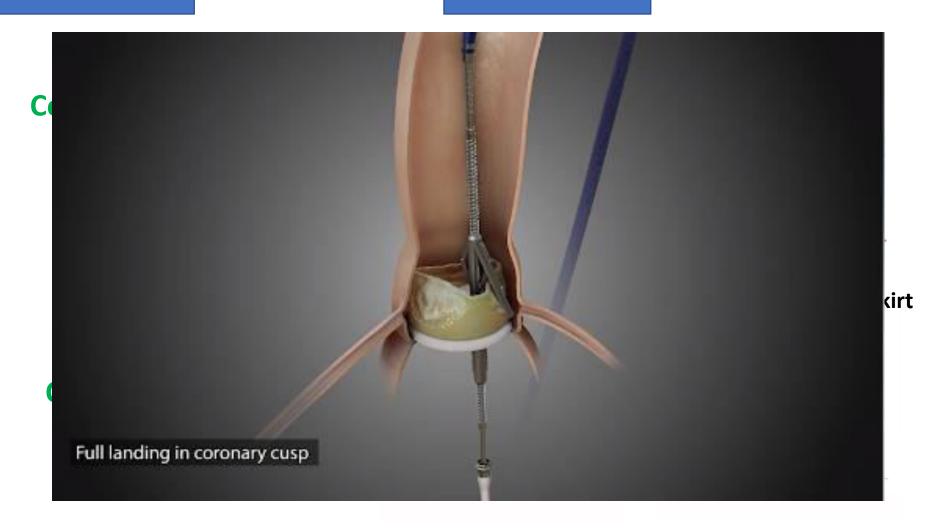
Odds Ratio


VIVID registry

Odds Ratio Odds Ratio Weight MH, Random, 95% CI Study MH, Random, 95% CI Deharo 2020 0.75 [0.55; 1.02] Woitek 2020 10.7% 0.88 [0.38; 2.05] Tam 2020 17.8% 0.64 [0.35; 1.15] Sedeek 2019 0.67 [0.29; 1.55] 10.8% Silaschi 2017 6.7% 1.70 [0.55; 5.21] Spaziano 2017 10.5% 1.07 [0.46; 2.52] Grubitzsch 2017 4.2% 1.19 [0.28; 5.06] Santarpino 2016 0.0% Ejiofor 2016 1.7% 3.32 [0.32; 34.65] Erlebach 2015 5.49 [1.12; 26.83] Total (95% CI) 100.0% 0.90 [0.61; 1.32] Heterogeneity: $Tau^2 = 0.0493$; $Chi^2 = 10.45$, df = 8 (P = 0.235); $I^2 = 23\%$ Test for overall effect: $t_8 = -0.63$ (P = 0.545) 0.5 1 2

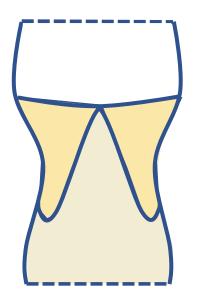
Favors ViV-TAVR Favors redo SAVR

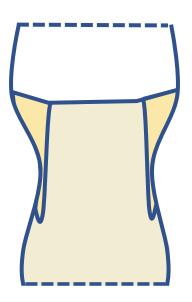


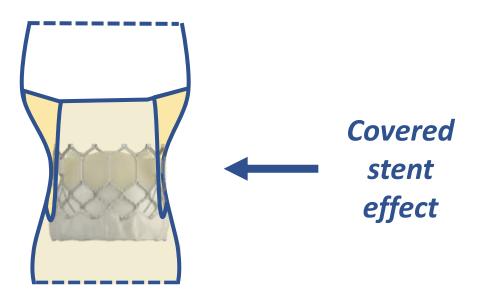

First implant

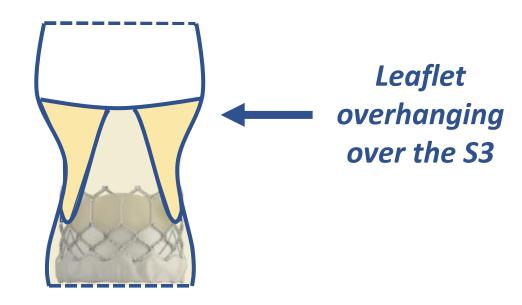
Second implant

TAVR

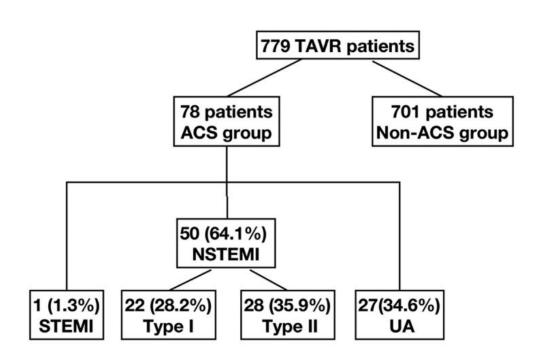

TAVR



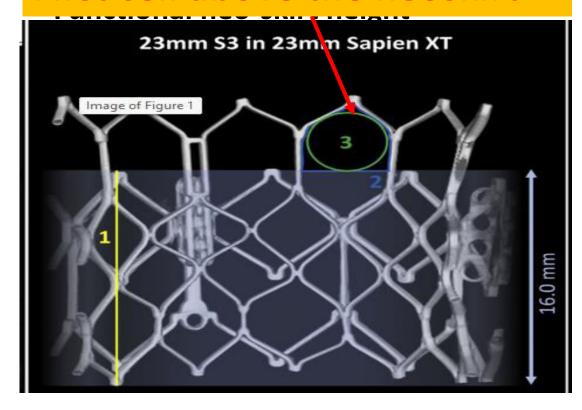

Closed valve



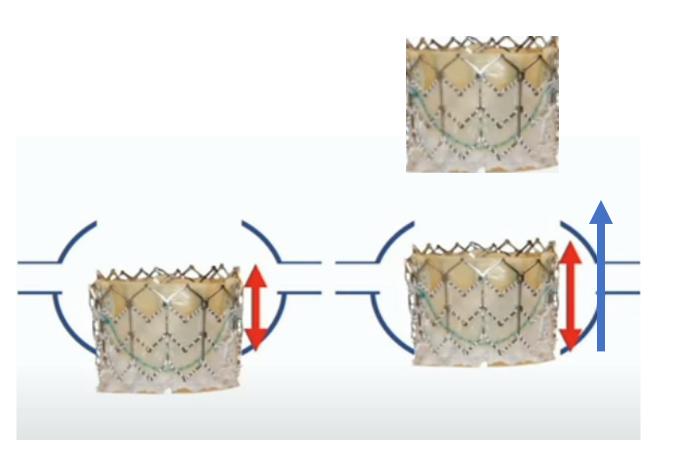
Open valve



THV in THV

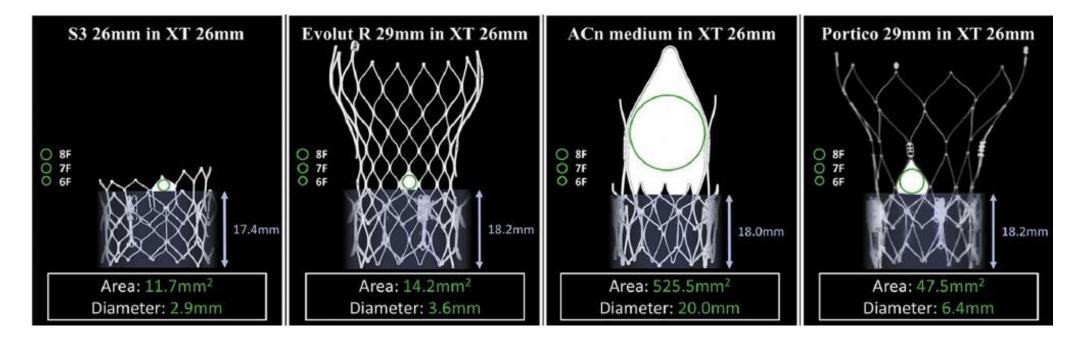


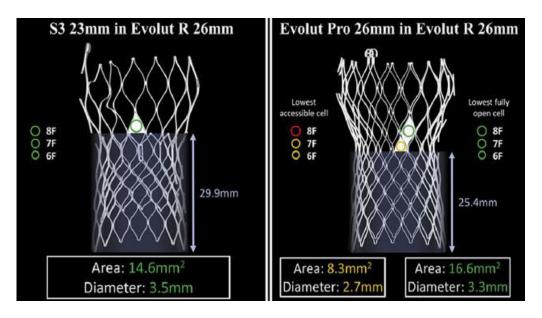
Redo TAVR combination and coronary access


Vilalta et al; JACC Int 2018

First cell above the neoskirt

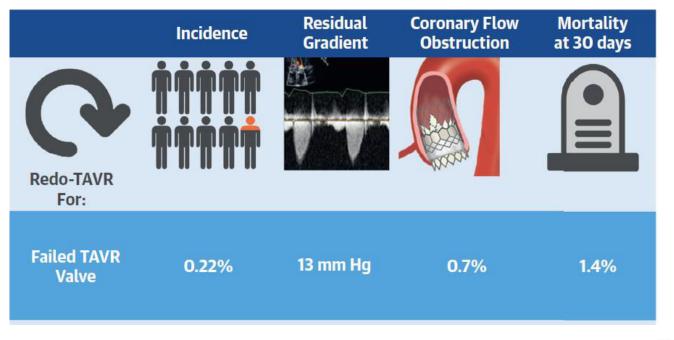
Functional neoskirt height


Implantation depth of first and second valve

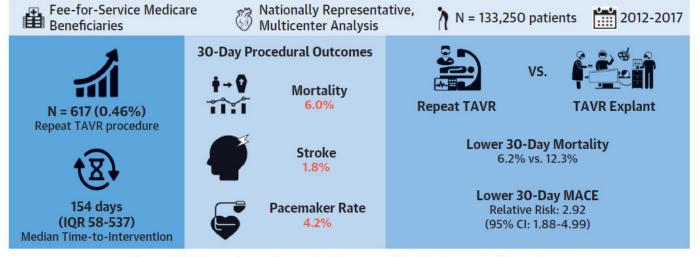


Type of valve combination

Index Valve			
26-mm	26-mm S3	17.4	
Sapien XT	2 -mm Evolut R (+4 mm)	22.7	9
	29-mm Evolut R (O mm)	18.2	
	29-mm Evolut R (-4 mm)	18.2	
	Medium ACURATE (+4 mm)	20.7	
	Medium ACURATE (0 mm)	18.0	
	Medium ACURATE (-4 mm)	18.5	
	29-mm Portico (+4 mm)	18.2	
	29-mm Portico (0 mm)	18.2	
	29-mm Portico (-4 mm)	18.0	
26-mm	23-mm S3 + 1 cc (high)	29.9	
Evolut R	23-mm S3 (low)	23.5	
	26-mm Evolut Pro (+4 mm)	31.6	
	26-mm Evolut Pro (0 mm)	25.4	
	26-mm Evolut Pro (-4 mm)	26.8	

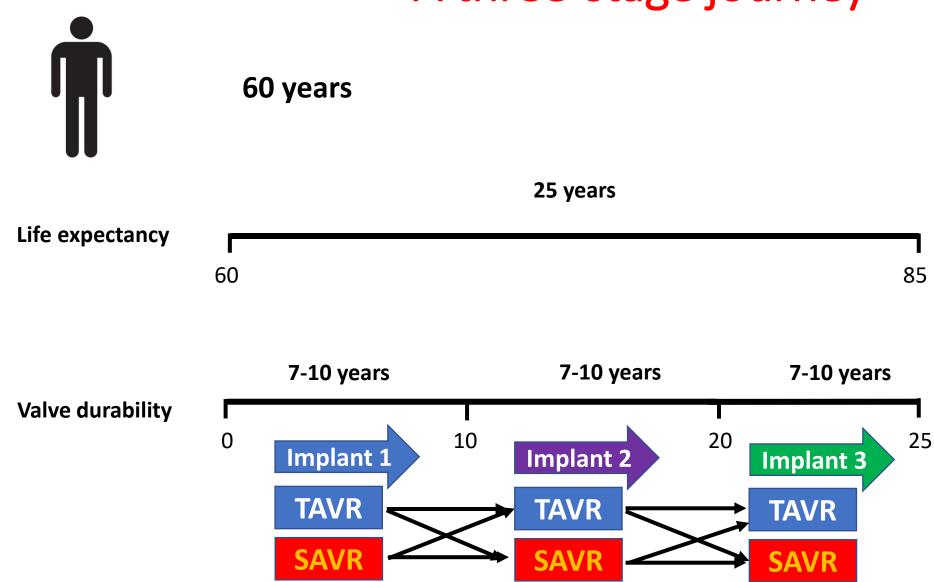

Meier et al; JACC Int 2022

Meier et al; JACC Int 2022

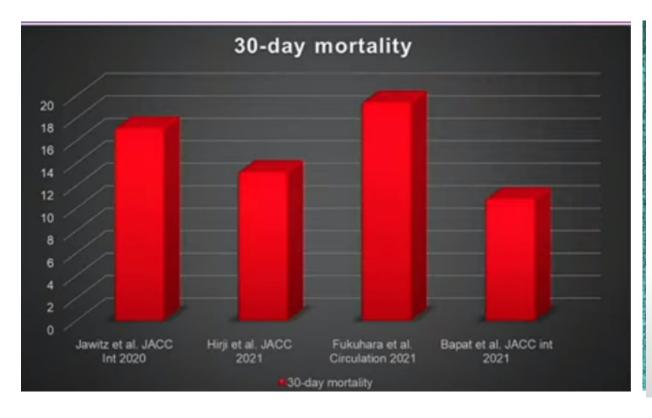


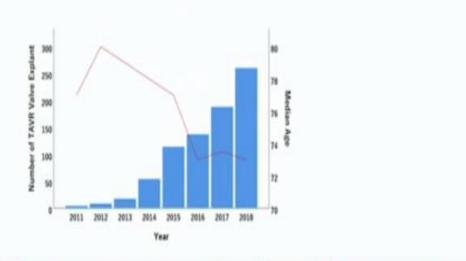
37 international centers 63,876 TAVR procedure 212 redo TAVR

Landes et al; JACC 2020

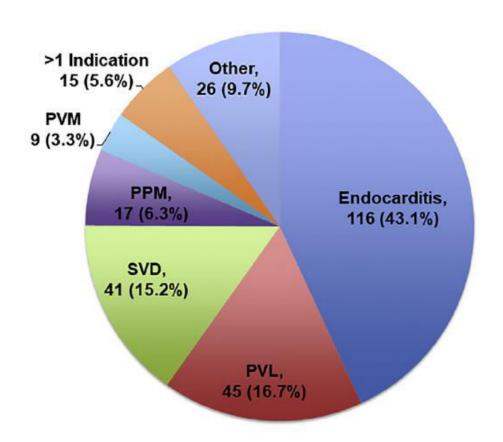

MEDICARE setting 133,250 TAVR 617 redo TAVR

Contemporary Repeat Transcatheter Aortic Valve Replacement Outcomes in the United States




Repeat TAVR can be performed with acceptable 30-day mortality and may be considered as a potential option in appropriate patients

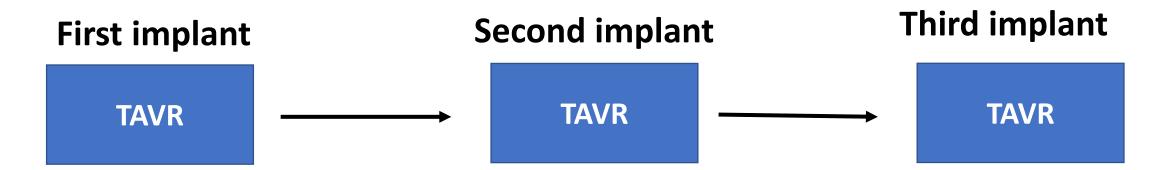
A three-stage journey



Performed by 483 surgeons (median <u>1.0</u> case per surgeon [IQR 1.0–2.0]) from 313 centers (median <u>1.0</u> case per center [IQR 1.0–3.0]).

Surgical Explantation After TAVR Failure

Mid-Term Outcomes From the EXPLANT-TAVR International Registry


Urgent or emergent cases: 53.1% of cases

Concomitant cardiac procedure: 54.6% of cases

Prior THV in inTHV: 7.2% of cases

Median age: 72 years

Median time of explantation: 11.5 months

- Large annulus
- Wide sinuses of Valsalva
- BEV with short frame

Conclusions

- A significant proportion of younger patients are being offered TAVI nowdays
- Although several issues are still unsettled, iteration of devices with better commissure alignment and leaflet modification devices will likely make REDO-TAVR feasible for a significant proportion of patients
- At the moment, an approach tailored on patient anatomy, lifetime expectations and preferences appears the optimal strategy