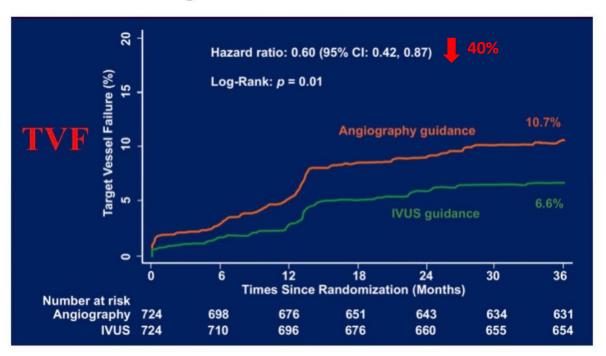


## "Come usare l'imaging per guidare l'impianto e l'ottimizzazione dello stent?



#### Dott. Massimo Fineschi

Cardiologia Interventistica Azienda Ospedaliero-Universitaria Senese Siena




## Clinical use of intracoronary imaging

- Randomized controlled trials and registries consistently support procedural and long-term benefit with the use of intravascular imaging (IVI) for percutaneous coronary intervention (PCI) guidance
- The benefits of intracoronary imaging depend largely on the interpretation and the operator's reaction to these findings. Imaging acquisition alone will not be sufficient to impact on outcome!



### 3-year Clinical FU

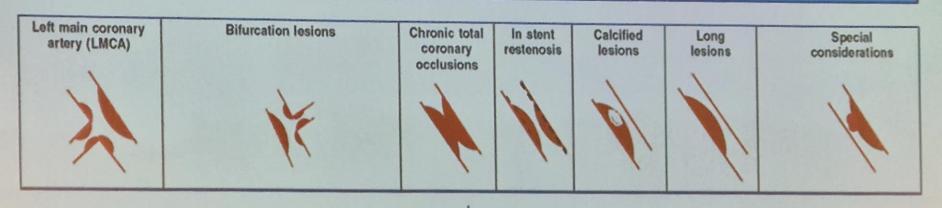




## Intravascular Imaging-Guided or Angiography-Guided Complex PCI

Joo Myung Lee, M.D., Ph.D., M.P.H., Ki Hong Choi, M.D., Ph.D., Young Bin Song, M.D., Ph.D., Jong-Young Lee, M.D., Ph.D., Seung-Jae Lee, M.D., Ph.D., Sang Yeub Lee, M.D., Ph.D., Sang Min Kim, M.D., Ph.D., Kyeong Ho Yun, M.D., Ph.D., Jae Young Cho, M.D., Ph.D., Chan Joon Kim, M.D., Ph.D., Hyo-Suk Ahn, M.D., Ph.D., Chang-Wook Nam, M.D., Ph.D., et al., for the RENOVATE-COMPLEX-PCI Investigators\*

<u>Objective</u>: to investigate whether intravascular imaging PCI using IVUS or OCT would improve clinical outcomes compared with angiography guided PCI in patients with <u>complex artery lesions</u>


#### **Primary Hypothesis**

Intravascular imaging-guided PCI would reduce TVF compared with angiography-guided PCI In treatment of patients with **complex coronary artery lesions** 

## Study design

## RENOVATE-COMPLEX-PCI Trial (NCT03381872)

## 1,620 Patients with Complex Coronary Artery Lesions Undergoing PCI



Randomization (2:1) for Treatment Strategy of Target Lesions (Stratified by acute coronary syndrome and participating centers)

Imaging-Guided Strategy N = 1,080 Angiography-Guided Strategy
N = 540



All patients were followed until 1 year after last patient enrollment.

#### EuroIntervention | TOP CITED 2022 ☆☆☆

VISUAL ILLUSTRATION. Optical Coherence Tomography-guided Coronary S Compared to Angiography: Design and Rationale of ILUMIEN IV: OPTIMAL P

#### Pre-PCI angiography

High-risk patient and/or presence of one or more high-risk lesions. All inclusion and exclusion criteria met

Successful and uncomplicated treatment of all non-target vessel lesions, if any

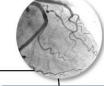
#### Randomisation 1:1

#### Inclusion

#### High-risk clinical characteristics

Medically treated DM

#### High-risk target lesion


- · ACS
- Long or multiple lesions (stent length >28 mm)
- Bifurcation with 2 planned stents
- Angiographic severe Ca<sup>2+</sup>
- CTO (crossed and predilated)
- In-stent restenosis

#### Co-primary endpoints

- Post-PCI minimal stent area assessed by OCT in each randomised arm
- Target vessel failure, the composite of cardiac death, target vessel myocardial infarction, or ischaemia-driven target vessel revascularisation

#### ILUMIEN IV: HYPOTHESIS

In high-risk patients and complex lesions, OCT-guided PCI compared to angiography-guided PCI will reduce TVF.



#### Angiography

Angiography-guided PCI, per "local standard practice"

Angiographic optimisation, per "local standard practice"

Post-PCI OCT, blinded to investigator

#### Procedure complete

30-day, 1-year and 2-year follow-up in all patients

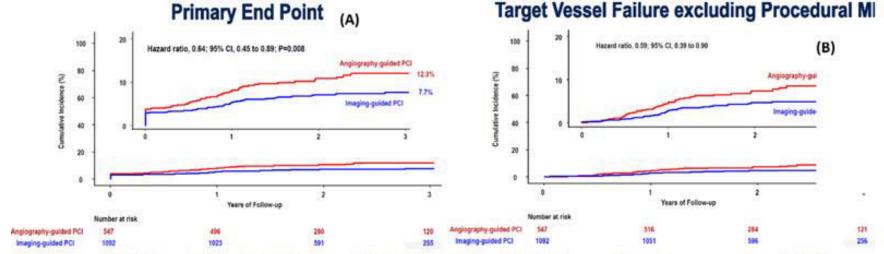
Primary clinical endpoint, maximum 2-year follow-up

Abbreviations: ACS, acute coronary syndrome; CTO, chronic total occlusion; DM, diabetes mellitus; OCT, optical coherence tomography; PCI, percutaneous coronary intervention.

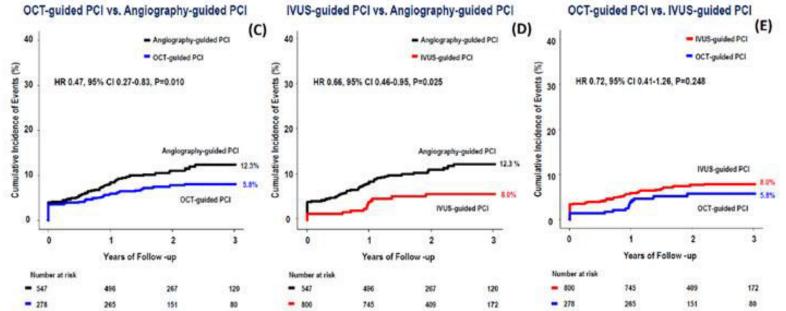
Ali Z, et al. EuroIntervention 2021;16:1092-1099

OCT

OCT stent sizing guidance,


per study protocl

OCT-guided optimisation,


per study protocl

Post-PCI OCT

Use of intravascular optical coherence tomography or intravascular ultrasound to guide stent implantation. The choice is yours!



## OCT-guided PCI vs. IVUS-guided PCI vs. Angiography-PCI



#### CENTRAL ILLUSTRATION IVUS and OCT: Similarities and Differences

|           | ОСТ  |          |                                                |          | IVUS |           |
|-----------|------|----------|------------------------------------------------|----------|------|-----------|
| Very good | Good | Feasible | Pre-PCI                                        | Feasible | Good | Very good |
|           |      |          | Severity of calcium                            |          |      |           |
|           |      |          | Prediction of slow flow                        |          |      |           |
|           |      |          | Stent sizing by vessel wall                    |          |      |           |
|           |      |          | Stent length to cover normal to normal         |          |      |           |
|           |      |          | Post-PCI                                       |          |      |           |
|           |      |          | Stent expansion                                |          |      |           |
|           |      |          | Tissue protrusion through strut                |          |      |           |
|           |      |          | Stent malapposition                            |          |      |           |
|           |      |          | Stent deformation (frequently at aorto-ostium) |          |      |           |
|           |      |          | Stent edge dissection                          |          |      |           |
|           |      |          | Residual disease at stent edge                 |          |      |           |
|           |      |          | Follow-up                                      |          |      |           |
|           |      |          | Old stent expansion                            |          |      |           |
|           |      |          | Tissue coverage                                |          |      |           |
|           |      |          | Neointimal hyperplasia                         |          |      |           |
|           |      |          | Stent fracture                                 |          |      |           |
|           |      |          | Stent malapposition                            |          |      |           |
|           |      |          | Positive remodeling of vessel wall             |          |      |           |
|           |      |          | Neoatherosclerosis                             |          |      |           |

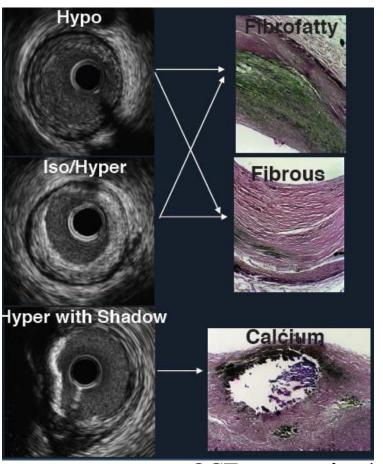
#### CENTRAL ILLUSTRATION: Best Practice Summary for Use of Intracoronary **Imaging** Intracoronary Imaging Assessment of **Lesion Preparation and** Preintervention Postprocedure Endpoints Assessment Stent Deployment and Complications Assess plaque composition, Identify stent underexpansion, Confirm landing zones lesion characteristics, and deformation, and malapposition mechanisms of stent failure Identify edge dissection, Prepare lesion (eg, angioplasty, Identify reference segments hematoma, and tissue and landing zones atherectomy, lithotripsy) protrusion Determine success of Choose stent size (length Rule out geographic miss and diameter) and lesion preparation strategy and and inflow/outflow disease optimize stent expansion preparation strategy Truesdell AG, et al. J Am Coll Cardiol. 2023;81(6):590-605.

## Modern OCT Guided PCI Workflow | MLD MAX

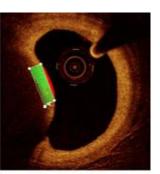
Each OCT run serves a separate purpose. The pre-PCI run helps determine the PCI strategy, and the post-PCI run allows for optimization of the stent as needed.

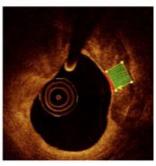
Pre-PCI OCT | Strategize

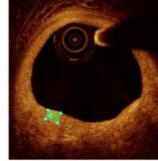
Morphology
Length
DIAMETER


Post-PCI OCT | Optimize

MEDIAL DISSECTION

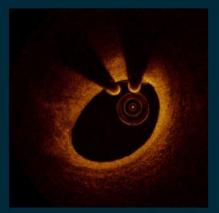

**A**PPOSITION


EXPANSION


## 1. Morphology Assess Plaque Composition

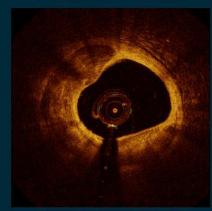


| Tissue type    | Image characteristics                                  |                                     |  |
|----------------|--------------------------------------------------------|-------------------------------------|--|
|                | ост                                                    | IVUS                                |  |
| Fibre          | Homogeneous<br>High reflectivity<br>Low attenuation    | Homogeneous<br>High reflectivity    |  |
| Calcium        | Sharp edges<br>Low reflectivity<br>Low attenuation     | Very high reflectivity<br>Shadowing |  |
| Lipid          | Diffuse edges<br>High reflectivity<br>High attenuation | Low backscatter                     |  |
| Red thrombus   | Medium reflectivity<br>High attenuation                | Medium-high reflectivit             |  |
| White thrombus | Medium reflectivity<br>Low attenuation                 |                                     |  |









OCT **penetration** is due to plaque composition: penetration maximal for fibrotic tissue and progressively less for lipid and thrombus.

## Morphology Guided Lesion Preparation







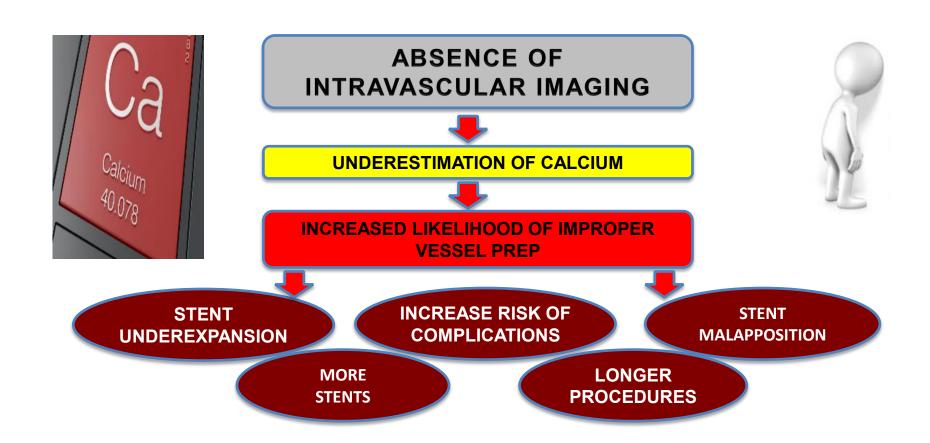


Lipidic

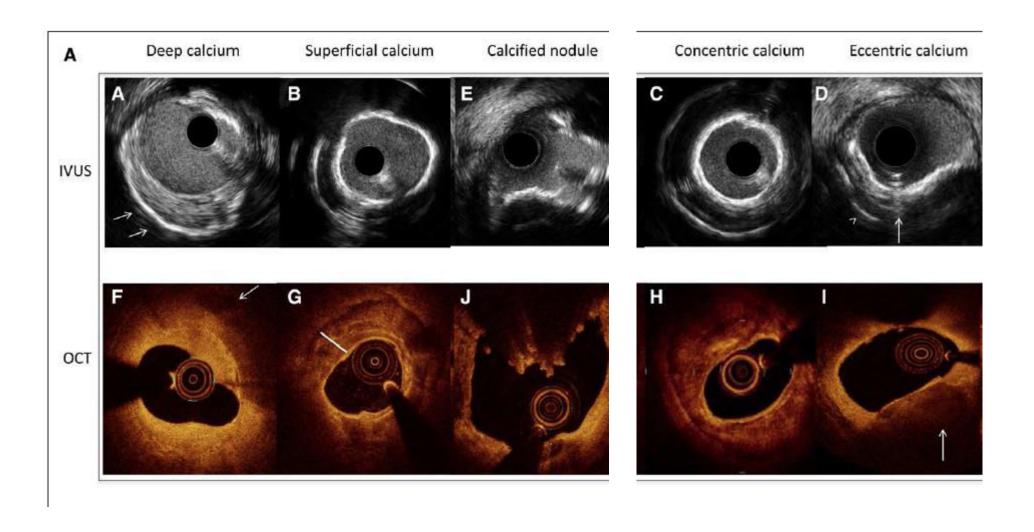
Fibrotic

Mild/Moderate Ca<sup>2+</sup>

Severe Ca<sup>2+</sup>

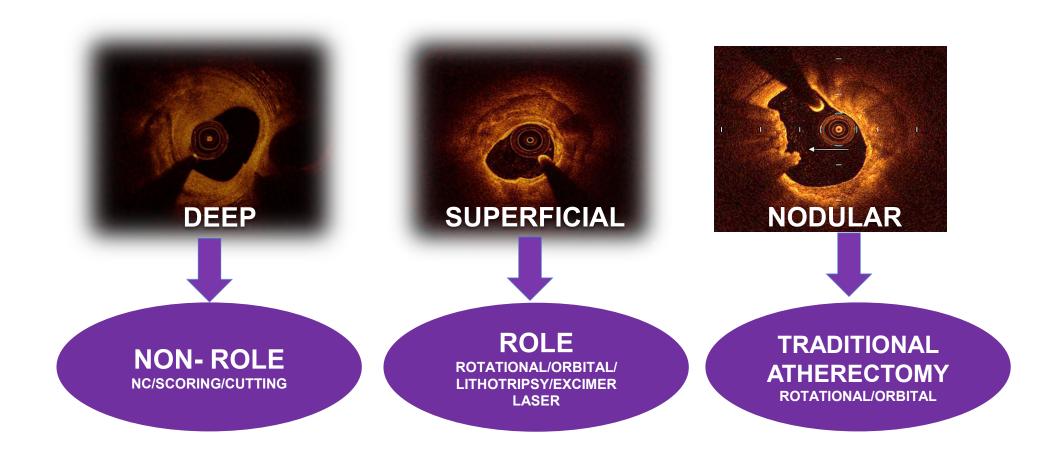

DIRECT STENTING<sup>1</sup>

COMPLIANT BALLOON<sup>2</sup>


NON-COMPLIANT BALLOON<sup>3</sup>

ATHERECTOMY OR IVL4

## \*THE CALCIUM PROBLEM\*



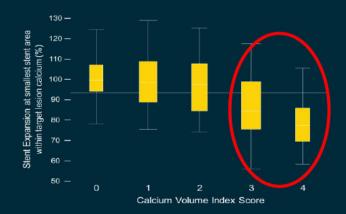

# PRE-PCI detection af calcium **DEFINE TYPE CALCIUM...**



## **DEFINE TYPE CALCIUM...**

#### **ROLE** FOR CALCIUM MODIFICATION




## Influence of Ca<sup>2+</sup> on Stent Expansion by OCT

#### OCT-Based Calcium Volume Index Score<sup>1</sup>

| 1. Maximum<br>Calcium Angle (º)         | ≤ 90°<br>90° < Angle ≤ 180°<br>> 180° | <ul><li>0 point</li><li>1 point</li><li>2 points</li></ul> |  |
|-----------------------------------------|---------------------------------------|------------------------------------------------------------|--|
| 2. Maximum<br>Calcium Thickness<br>(mm) | ≤ 0.5 mm<br>> 0.5 mm                  | ➤ 0 point ➤ 1 point                                        |  |
| 3. Calcium Length<br>(mm)               | ≤ 5.0 mm<br>> 5.0 mm                  | ➤ 0 point ➤ 1 point                                        |  |
| Total score                             | o to 4 points                         |                                                            |  |

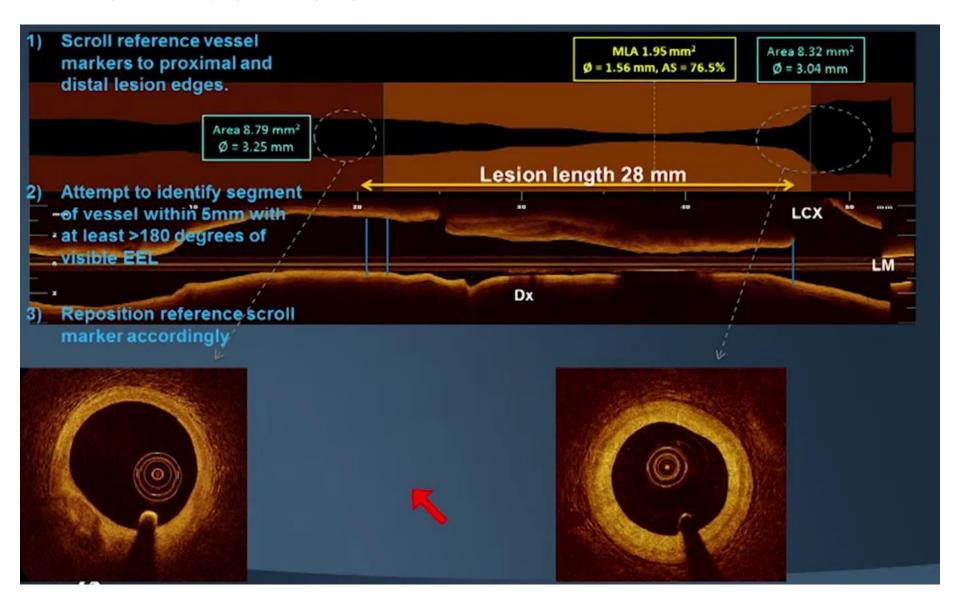
#### Rule of 5's

- 0.5 mm thickness
- 5.0 mm long
- 50% vessel arc

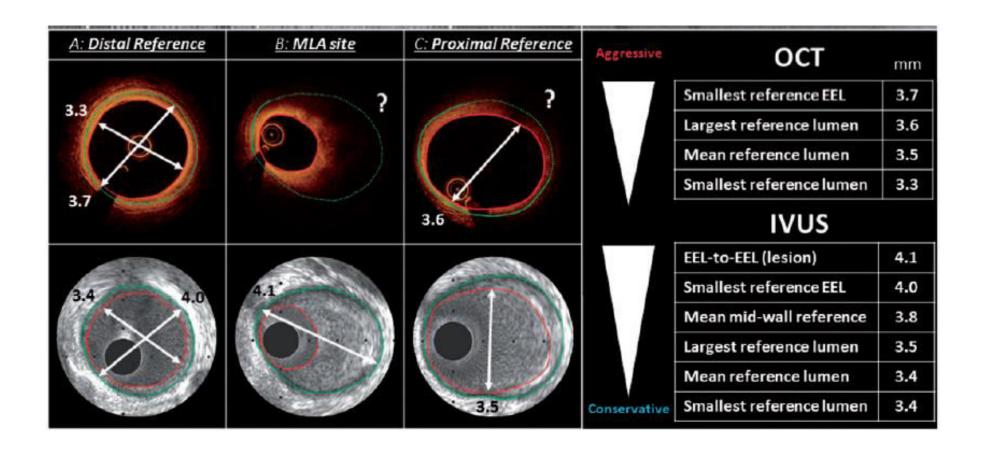




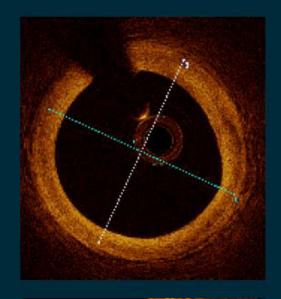



1. Fujino, A. et al. A new optical coherence tomography-based calcium scoring system to predict stent under expansion. EuroIntervention, April 2018; 13(18):e2182-e2189.

#### Information contained herein for DISTRIBUTION outside of the U.S. only.


Check the regulatory status of the device in areas where CE marking is not the regulation in force. ©2020 Abbott. All rights reserved. MAT-2002163 v2.0 Page 22 of 53

## 2. Identify Reference Segments (Prox & Dist)


<u>Choose Stent Length</u>: avoidance the landing zone within an area of residual plaque burden >50% and particularly lipid-rich plaque



# 3. Diameter Choose Stent Size (vessel size assessment)



## OCT Stent Sizing Algorithm







Can the EEL be identified at the distal reference segment to allow vessel diameter measurement?



YES



Stent diameter decided by OCT measurement of mean EEL to EEL diameter rounded <u>down</u> to nearest stent size<sup>1</sup>



Stent diameter decided by OCT measurement of mean lumen diameter rounded <u>up</u> to nearest stent size<sup>2</sup>

NO



1. Ali, Z., et al., ILUMIEN III Study, Lancet Journal, 2016; 1-11. 2. Shlofmitz, E. et al. Algorithmic Approach for OCT Guided Stent Implantation During PCI. Intervent Cardiol Clin 7 (2018) 329-344.

Information contained herein for DISTRIBUTION outside of the U.S. only.

Check the regulatory status of the device in areas where CE marking is not the regulation in force. ©2020 Abbott. All rights reserved. MAT-2002163 v2.0

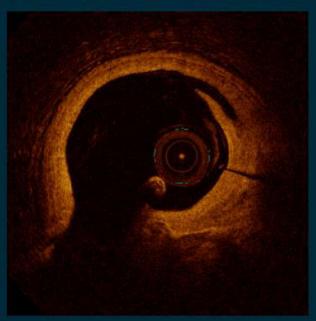
## Modern OCT Guided PCI Workflow | MLD MAX

Each OCT run serves a separate purpose. The pre-PCI run helps determine the PCI strategy, and the post-PCI run allows for optimization of the stent as needed.

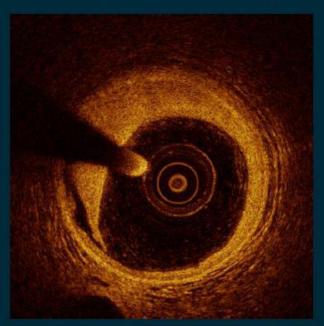
**Pre-PCI OCT | Strategize M**ORPHOLOGY LENGTH **DIAMETER** Post-PCI OCT | Optimize **M**EDIAL DISSECTION **A**PPOSITION **EXPANSION** 

## **SECTION 4**

# Medial Dissection


## Dissections

Address Significant Dissection<sup>1</sup>


Dissection penetrates medial layer, and is greater than 1 quadrant arc



Place additional stent (particularly for distal dissections)



Intimal



Medial



Intramural Hematoma

**Edge Dissection**: no major edge dissection in the proximal or distal reference segments defined as a location that is 5 mm from the edge of the stent, extends to the medial layer with potential to provide flow disturbance (defined as  $\geq$ 60° of the circumference of the vessel at site of dissection and/or  $\geq$  3mm in length of the dissection flap

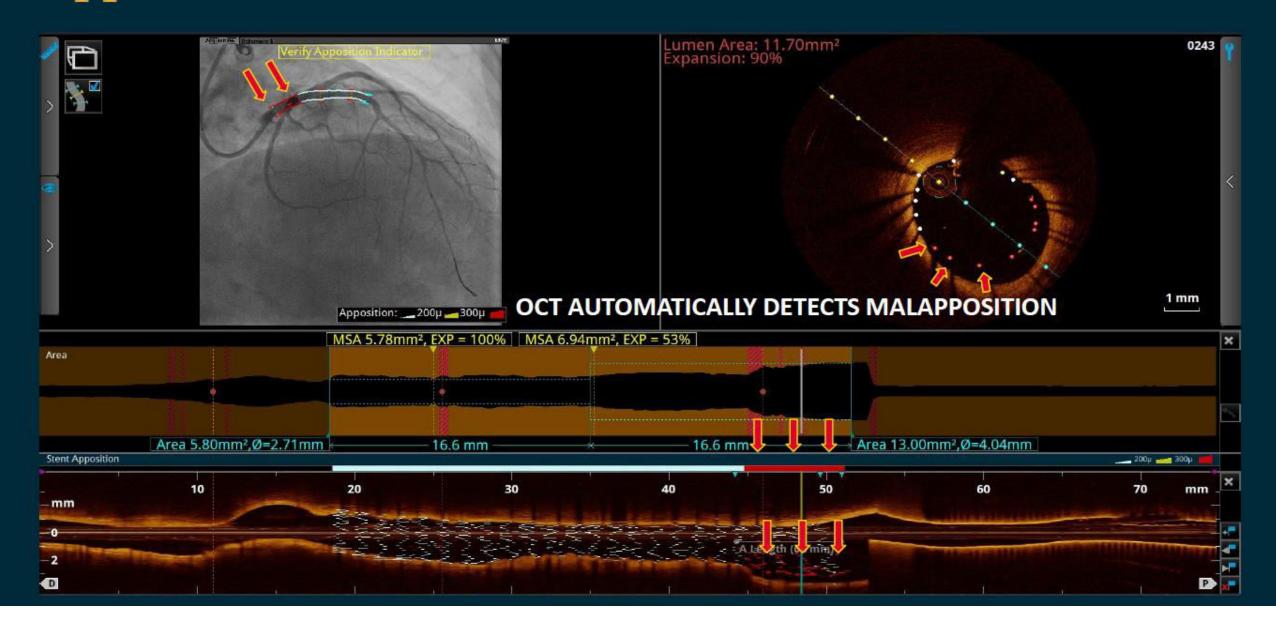
### **SECTION 5**

# Apposition

## Apposition

If the stent struts are in contact with the artery wall, the stent is apposed



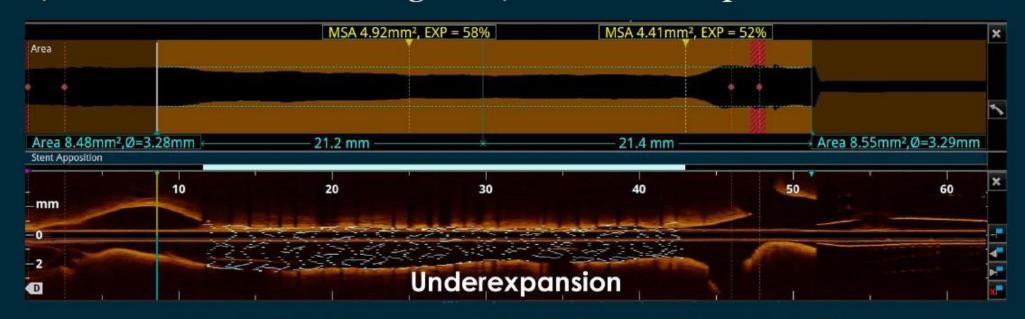

## **Address Gross Malapposition**

 Longer than 3 mm,¹ and ≥0.3 mm from wall²

#### Common Practice<sup>3</sup>

Dilate with semi-compliant balloon at low pressure

## **Apposition Indicator**




# eXpansion

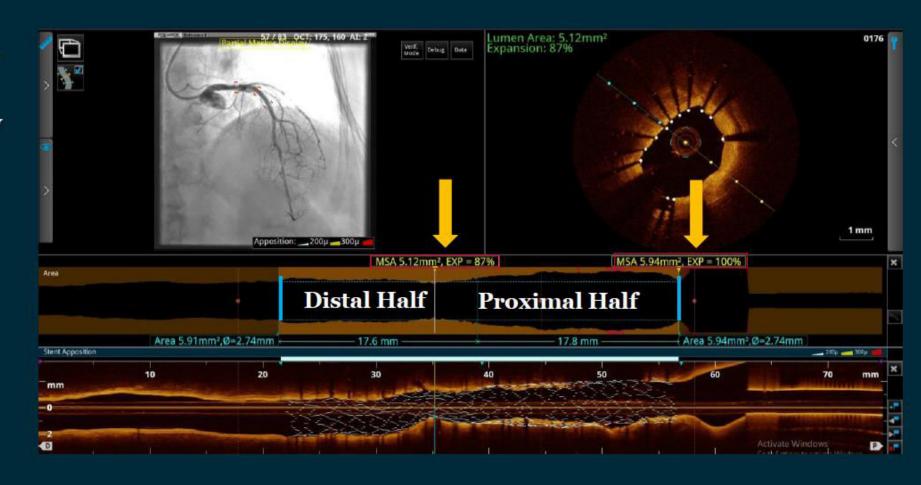
Stent underexpansion is established as a major predictor of stent failure (restenosis/thrombosis) Stent expansion describes the minimum stent CSA either as an absolute measure (absolute expansion) or compared with the predefinite reference area (relative expansion: prox-dist-average)

## eXpansion

If the stent is expanding the lumen, holding the lesion close to, or greater than, the normal reference segment, the stent is expanded.



**GOAL** 

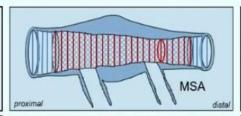

ACCEPTABLE = MSA ≥ 80% OF MEAN REFERENCE LUMEN AREA¹

OPTIMAL = MSA ≥ 90% OF MEAN REFERENCE LUMEN AREA¹

## Determine Expansion / MSA - Dual

## Fully automated expansion display

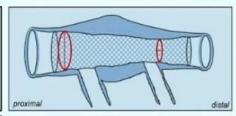
- ROI automatically detected
- Expansion automatically displayed




- Determine your proximal half MSA compared to your proximal reference
- Determine your distal half MSA compared to your distal reference

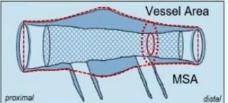
## Definitions of 10 stent expansion indexes

#### **MSA**


Minimum stent area in the entire stent



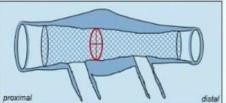
#### **Stent Asymmetry**


Minimum Stent Diameter in the entire stent

Maximum Stent Diameter in the entire stent

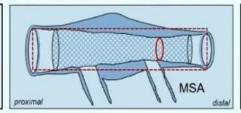


#### MSA/Vessel Area Stent Exp


MSA
Vessel Area at MSA × 100

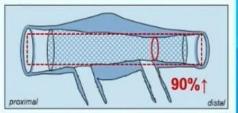


#### **Stent Eccentricity**


Minimum of Maximum Stent Diameter

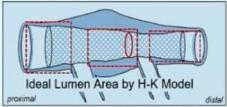
Maximum Stent Diameter




#### **Conventional Stent Exp**

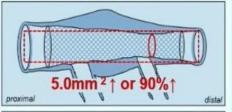
MSA
Average of Proxi and Dist RLA × 100




#### **IVUS-XPL** Criteria

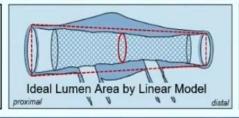
Minimum Lumen Area >90% of distal reference lumen area




#### Minimum Stent Exp by H-K Model

Minimum of Stent Area × 100

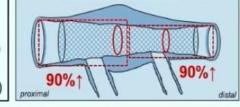



#### **ULTIMATE** Criteria

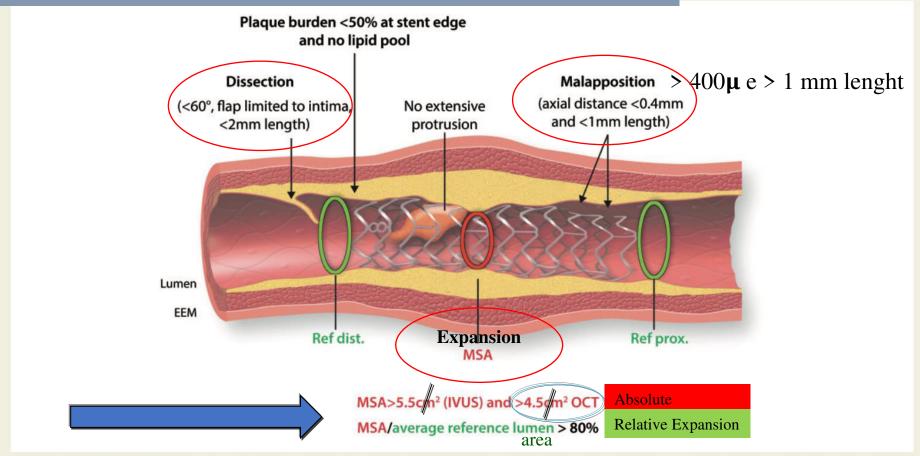
minimum lumen area >5.0mm² or >90% of distal reference lumen area



#### Minimum Stent Exp by Linear Model


Minimum of Stent Area × 100




#### ILUMIEN IV Criteria

Proximal MSA × 100
Proximal Reference Lumen Area (≥90%)

Distal MSA × 100
Distal Reference Lumen Area (≥90%)

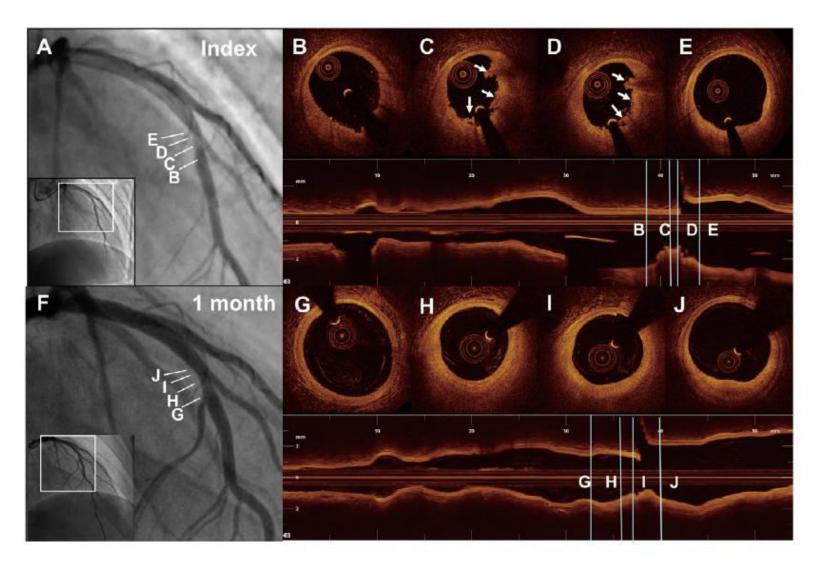


## Post-Procedural Assessment and Complication



**Take home figure** Summary of post-percutaneous coronary intervention optimization targets. The most relevant targets to be achieved following stent implantation in non-LM lesions are shown. These include optimal stent expansion (absolute as well as relative to reference lumen diameter); avoidance of landing zone in plaque burden >50% or lipid rich tissue; avoidance of large malapposition regions, irregular tissue protrusion, and dissections. Thresholds provided reflect the consensus of this group. Some are based on consistent and robust prospective data (e.g. stent expansion, landing zone) and others are less established (e.g. malapposition).

## Conclusion


- The interventional community is moving towards comprehensive approaches in PCI, integrating anatomical information with imaging and function
- Integration of routine IVI for PCI has the potential to improve procedural safety and clinical outcomes.

No excuse for not using!

| Table. OCT Definitions of ACS Culprit Lesions |                                                                                                                                                                                           |  |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Lesion type                                   | Description                                                                                                                                                                               |  |
| Plaque erosion                                | Intact fibrous cap; with or without luminal thrombosis; underlying plaque can be lipid, fibrous, or intimal thickening; calcification rare                                                |  |
| <b>Definite</b> OCT-erosion                   | Luminal thrombus; intact fibrous cap; underlying plaque visible                                                                                                                           |  |
| Probable OCT-erosion                          | (a) Absence of luminal thrombus; irregular luminal surface                                                                                                                                |  |
|                                               | (b) Luminal thrombus; attenuation of underlying plaque by thrombus; no superficial lipid or calcification<br>immediately proximal or distal to the site of thrombus                       |  |
| Plaque rupture                                | Lipid plaque with cap disruption; with or without luminal thrombus; cavity may exist                                                                                                      |  |
| Calcified nodule                              | Disrupted fibrous cap; protruding nodular calcification with underlying fibrocalcific plaque; luminal thrombus; superficial calcium; substantive calcium proximal and/or distal to lesion |  |

ACS, acute coronary syndrome; OCT, optical coherence tomography.

- The presence of a large amount of thrombus doesen't allows to detect the underlying structure. Plaque morphology is defined unclassifiable when OCT is unable to visualize clearly the lesion type because of an excess of thrombus obscuring the underlying structure.
- The inability to classify with OCT the culprit plaque has been reported in one quarter of the case, sometimes manual trombectomy before OCT could allows a better visualization
- In this case we can only speculate the presence of erosion because normal vessel wall architecture was preserved proximal and distal to the lesion



**Figure 3.** Representative case of ST-segment elevation myocardial infarction (STEMI) caused by plaque erosion in a 27-year-old man. Baseline angiogram (**A**) shows a total occluded lesion in the mid left anterior descending artery (LAD). After thrombus aspiration, residual stenosis on the angiogram (**A**) at the culprit site was mild (40%). Serial optical coherence tomography (OCT) cross-sectional images from distal to proximal (**B**–**E**) of the culprit lesion indicate plaque erosion with white thrombus (arrows). After 1 month of treatment with antithrombotic agents, angiogram (**F**) shows a 30% stenosis, and OCT images (**G**–**J**) show no visible thrombus overlying a fibrous plaque.

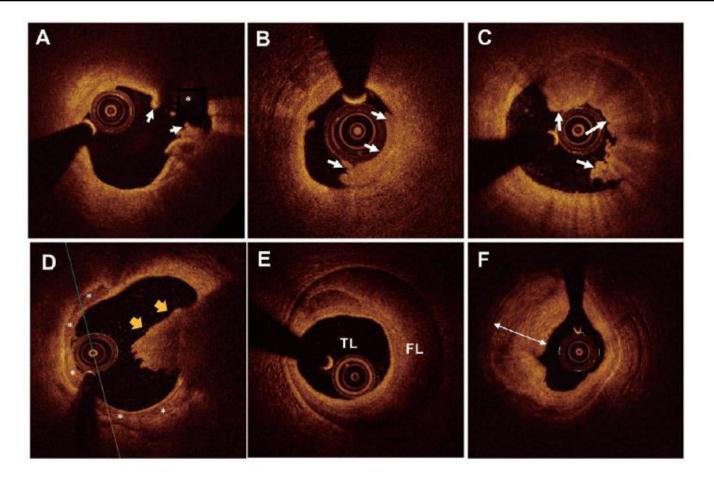



Figure 2. Representative images of culprit lesions by optical coherence tomography (OCT). (A) Plaque rupture: disrupted fibrous cap (white arrows) with presence of a cavity (asterisk). (B) Definite plaque erosion: mural thrombosis (white arrows) overlying an intact fibrous cap plaque. (C) Probable plaque erosion: presence of massive thrombus (white arrows) without superficial lipid pool and calcification immediately proximal or distal to the thrombus. (D) Calcified nodule: presence of thrombus (yellow arrows) overlying a superficial and protruding calcification (asterisk). (E) Spontaneous coronary artery dissection with hematoma (TL, true lumen; FL, false lumen). (F) Coronary spasm characterized by intimal/medial thickening (double arrow).

## **ILUMIEN IV**

#### ILUMIEN IV (OCT) criteria

Choice of stent size based on external elastic lamina diameter or (if EEL not visible) the mean lumen diameter

Minimum stent area >90% reference lumen area

Minimum lumen area at stent edges >4.5mm<sup>2</sup>

