

William Fulton, MD thesis, University of Glasgow 1963

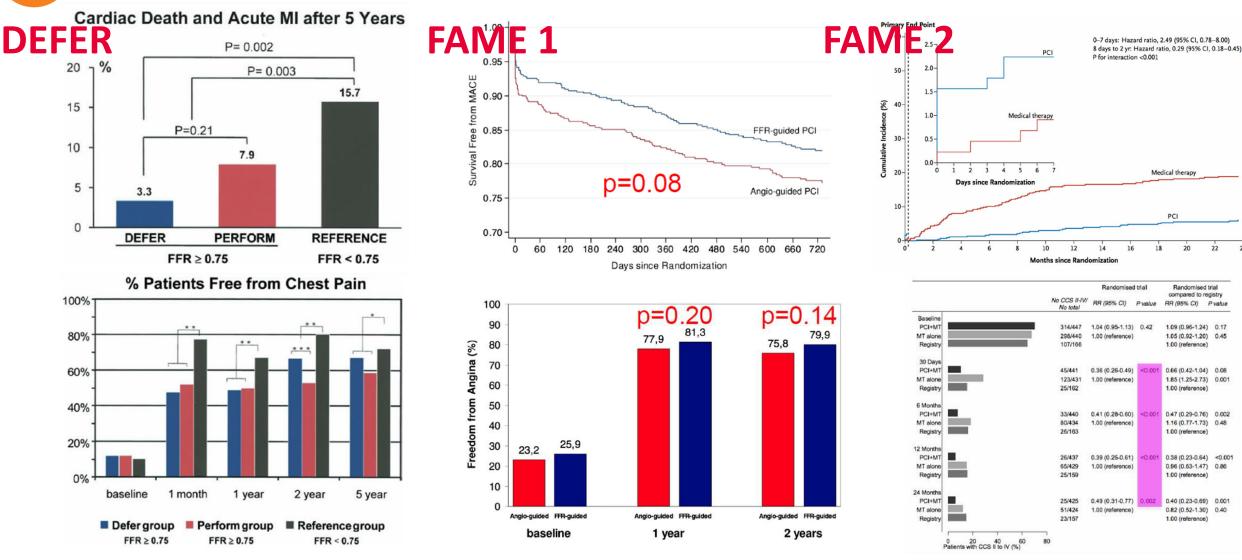
Integration of the #Full Physiology Approach in Daily Practice

Antonio Maria Leone MD PhD

Director of Diagnostic and Interventional Cardiology / ICCU Ospedale Fatebenefratelli Isola Tiberina Gemelli Isola Roma

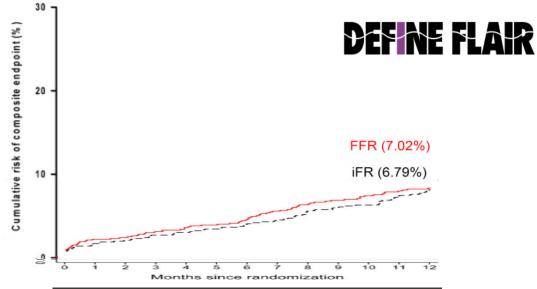
Potential conflicts of interest

Speaker's name: Antonio Maria Leone

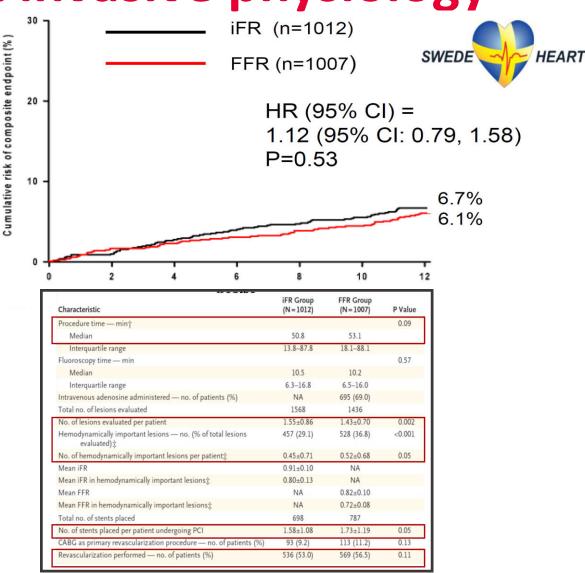

☑ I have the following potential conflicts of interest to report:

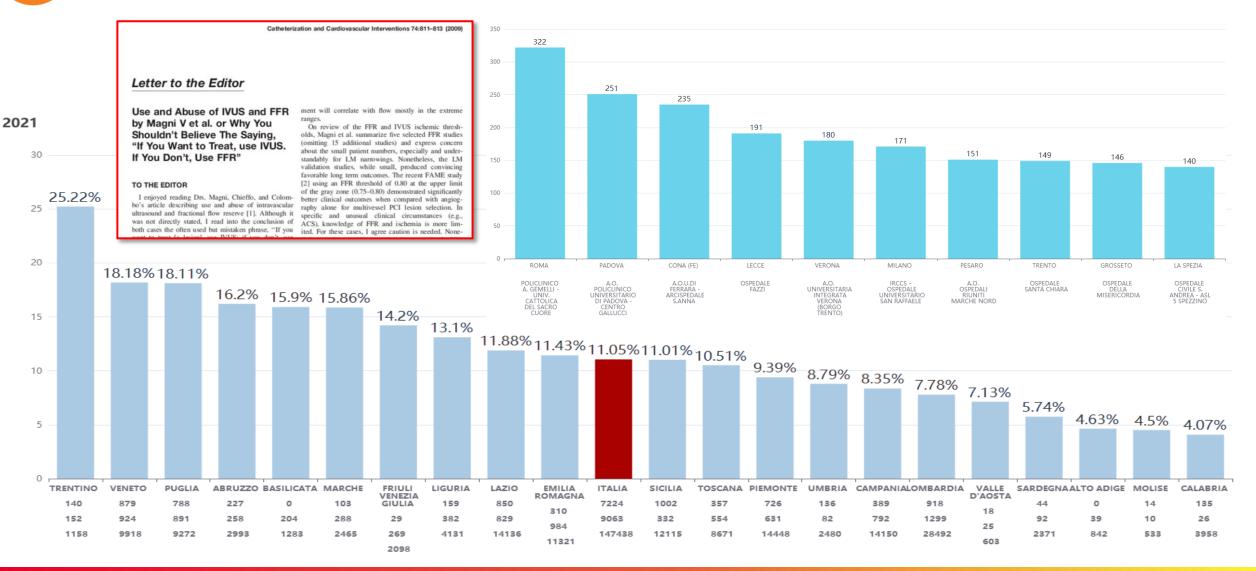
Dr. A.M. Leone is an advisor for Abbott Vascular and Bracco Imaging and received speaking honoraria from Abbott Vascular, Medtronic and Abiomed in the past.

All contents provided by Dr. Leone unless otherwise noted

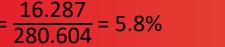


What ICs know about invasive physiology

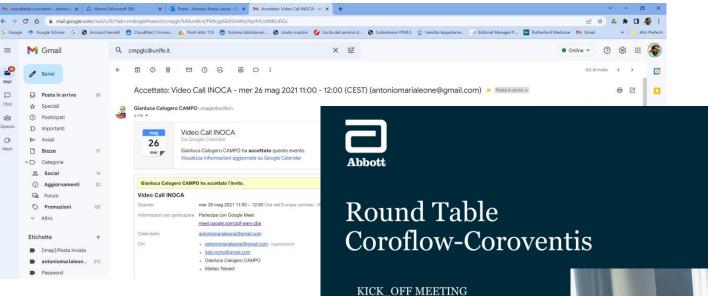



What ICs know about invasive physiology

Variable	iFR Group (N=1242)	FFR Group (N=1250)	P Value
Radial-artery approach — no. of patients (%)	896 (72.1)	888 (71.0)	0.54
Procedure time — min			
Median	40.5	45.0	0.001
Functionally significant lesions — no. (% of total vessels evaluated) 🖇	451 (28.6)	557 (34.6)	0.004
\geq 1 Functionally significant lesions present — no. of patients (%)§	426 (34.3)	486 (38.9)	0.02
Mean IFR	0.91±0.09	NA	
Mean FFR	NA	0.83±0.09	
Percent of lesions within the FFR range			
<0.60	NA	1.96	
0.60-0.90	NA	75.08	
>0.90	NA	22.96	
Revascularization performed — no. of patients (%)			
Total	590 (47.5)	667 (53.4)	0.003
CABG	25 (2.0)	42 (3.4)	0.04
PCI	565 (45.5)	625 (50.0)	0.02
Stents placed — no. (% of total stents placed)			
Total	822 (100)	906 (100)	0.86
Drug-eluting stent	811 (98.7)	893 (98.6)	
Bioresorbable vascular scaffold	11 (1.3)	13 (1.4)	
No. of stents placed per patient	0.66±0.92	0.72±0.96	0.09



Or How ICs translate invasive physiology in practice



Dati Nazionali GISE 2021 **FullPhysiology**

Invasive Assessment Coronary Angiograms

July 12°, 2021

AGENDA #Ful Physiology NETWORK SUMMIT

SCIENTIFIC COMMETTEE

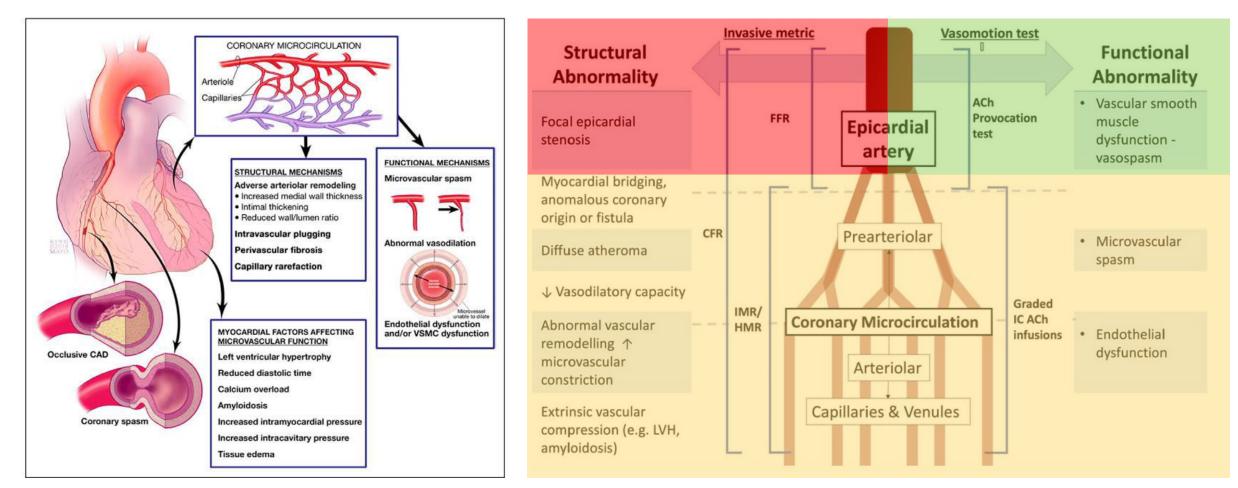
ANTONIO MARI

LEONE

GIANLUCA CAMPO Azienda Ospedaliero Universitaria di Ferrara ITALO PORTO Ospedale S.Martino Pol di Genera

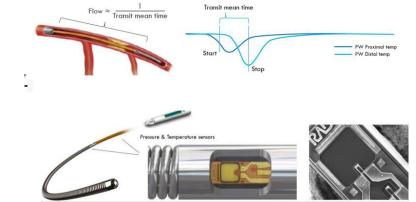
FACULTY

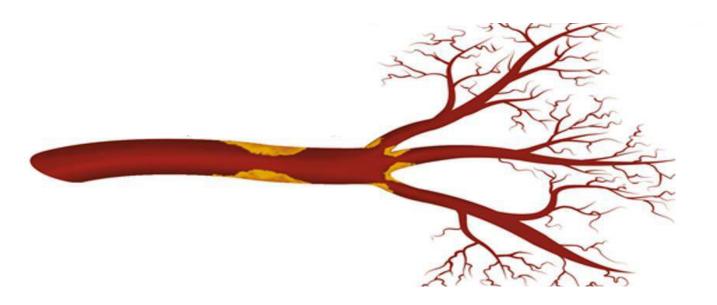
HARCO ANCONA IRCCS Oxpedia San Ruffielen, Milane SIMONE EISCAGLIA A.O.U. Srenze LUIGI DI SERAFINO A.O.U. Srenze, Sienz STEFANO GALLI Centro Cardingice Mentine, Milane


GIOYANNI MONIZZI IRCCS Operate Galazzi S'Ambregio, Milas GIAMPAOLO NICCOLI A.O.U. di Perma ALBERTO POLIMENI Univenti della Calebria, Catorazo ROBERTO SCARSINI A.O.U. Vienna MATTEO TEBALDI A.O. Operatel Marche Nied, Perano

- No Club / «niche»
- Sharing a common language
- Expressing the full potential of physiology in daily practice (case-based approach)

F. Ph. For Structural and Functional abn.




Courtesy from T. Engstroem

Crea F, et al. Eur Heart J 2016;37:1514-6

Oifferent indexes for different compartments?

Nico H.J. Pijls, Circulation. 2001;104:2003-2006 Fearon et al. Circulation. 2003;107:3129-3132

Our Ado and Ach protocols

٠

Adenosine 140 mcg/Kg/min

X vials (see below) of Adenosine diluted in 60 ml di NaCl 0.9% and infused in 2'

Weight	Adenosine vials
60 Kg	2.8 vials
70 Kg	3.3 vials
80 Kg	3.7 vials
90 Kg	4.2 vials
100 Kg	4.7 vials

Acetilcholine

- 1 vial of Miovisin 20mg/2ml diluted in 100 ml of NaCl 0.9% ٠
- 1 ml of this solution (200 mcg/ml) diluted with 19 ml of 0.9% ٠ NaCl = 20 ml of 10 mcg/ml Ach (Master solution)
 - Take from the Master solution: 2 ml + 18 ml of 0.9% NaCl % (20 mcg) 5ml + 15 ml of 0.9% NaCl % (50 mcg) 10 ml + 10 ml of 0.9% NaCl % (100 mcg) 20 ml (200 mcg)

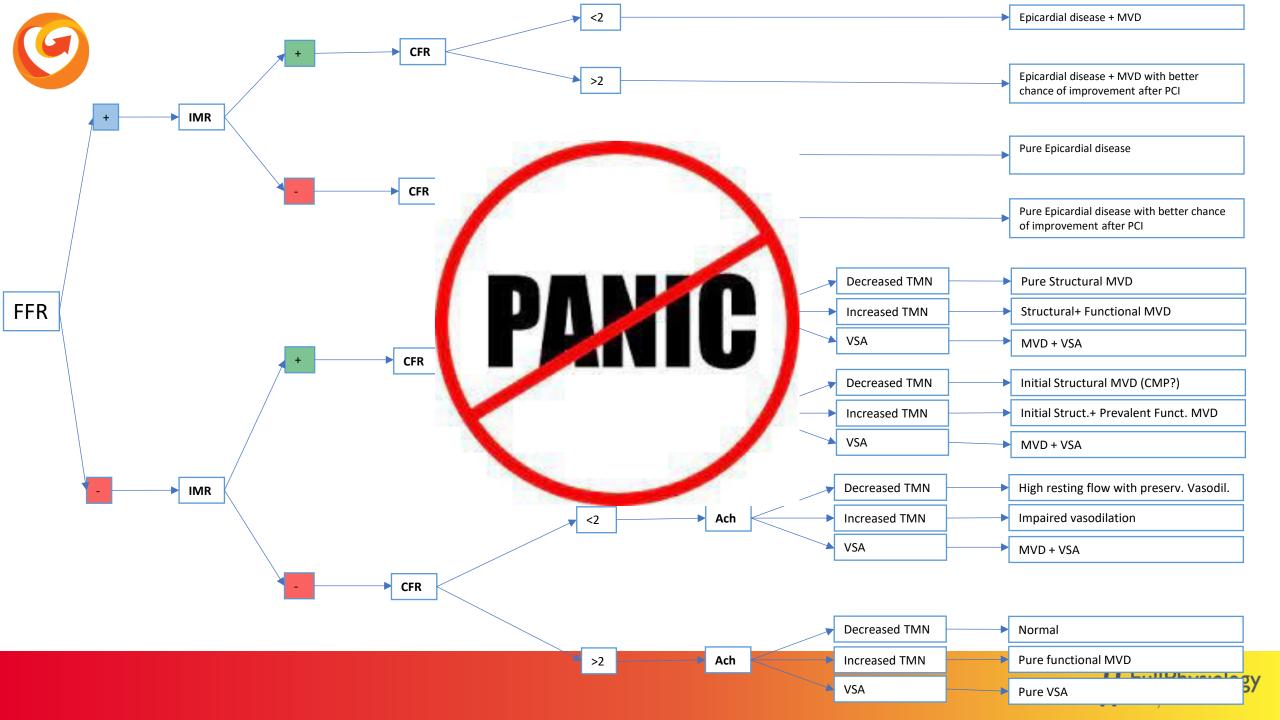
infuse manually in the LCA incremental doses oh Ach (20-50-100-200 mg) in 2 minutes ٠ (rarely we infuse incremental doses of Ach 20-50-80 mg in the RCA)

ficio Seareteria Organi Colleg

Esiti Area PreAutorizzazione CTS 17, 18 e 19 Marzo 2021

Richieste di inserimento nell'elenco istituito ai sensi della Legge n.648/9

6. Inserimento del medicinale Acetilcolina cloruro (Miovisin), per via intracoronarica, cl'ele populatione istituito ai sensi della Legge n. 648/96 come test farmacologico per la valutazione curvinzioni vascolare coronarica.
Parere CTS:La CTS esprme parere non favorevole.



ESC guidelines for CCS

Recommendations	Class ^a	Level ^b
Guidewire-based CFR and/or microcirculatory resistance measurements <u>should be consid-</u> ered in patients with persistent symptoms, but coronary arteries that are either angiographi- cally normal or have moderate stenoses with preserved iwFR/FFR. ^{412,413}	lla	в
Intracoronary acetylcholine with ECG moni- toring may be considered during angiography, if coronary arteries are either angiographically normal or have moderate stenoses with pre- served iwFR/FFR, to assess microvascular vasospasm. ^{412,438-440}	IIb	В
Transthoracic Doppler of the LAD, CMR, and PET may be considered for non-invasive assessment of CFR. ^{430–432,441}	ШЬ	в

Recommendations	Class ^a	Level ^b
An ECG is recommended during angina if possible.	1	с
Invasive angiography or coronary CTA is rec- ommended in patients with characteristic epi- sodic resting angina and ST-segment changes, which resolve with nitrates and/or calcium antagonists, to determine the extent of under- lying coronary disease.	I	с
Ambulatory ST-segment monitoring should be considered to identify ST-segment deviation in the absence of increased heart rate.	lla	с
An intracoronary provocation test should be considered to identify coronary spasm in patients with normal findings or non-obstruc- tive lesions on coronary arteriography and a clinical picture of coronary spasm, to diagnose the site and mode of spasm. ^{412,414,438-440}	lla	в

What is #FullPhysiology assessment

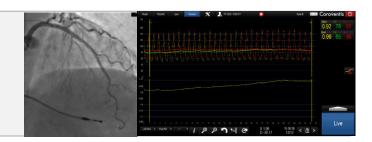
- NHPR (≤0.89)
- cFFR (≤0.83)
- FFR (≤0.80) -> perform pullback

Microvascular disease assessment

- IMR (>25)
- CFR (< 2.0)
- RRR (<2.0)*

*Resistive resistance ratio= $\frac{Trm*Pdr}{Thm*Pdh}$

00540


Vasomotor testing

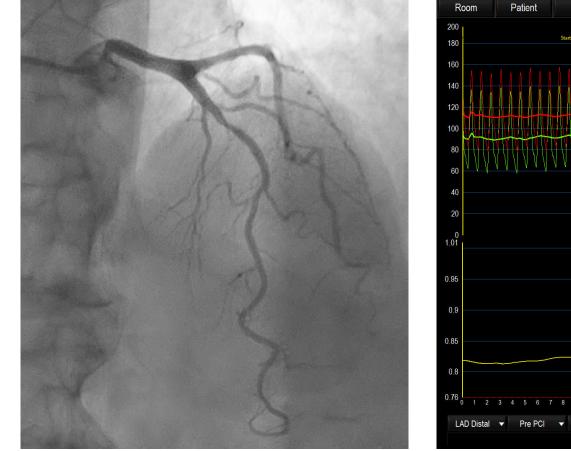
• Ach

3

Post PCI Full Physiology assessment if applicable

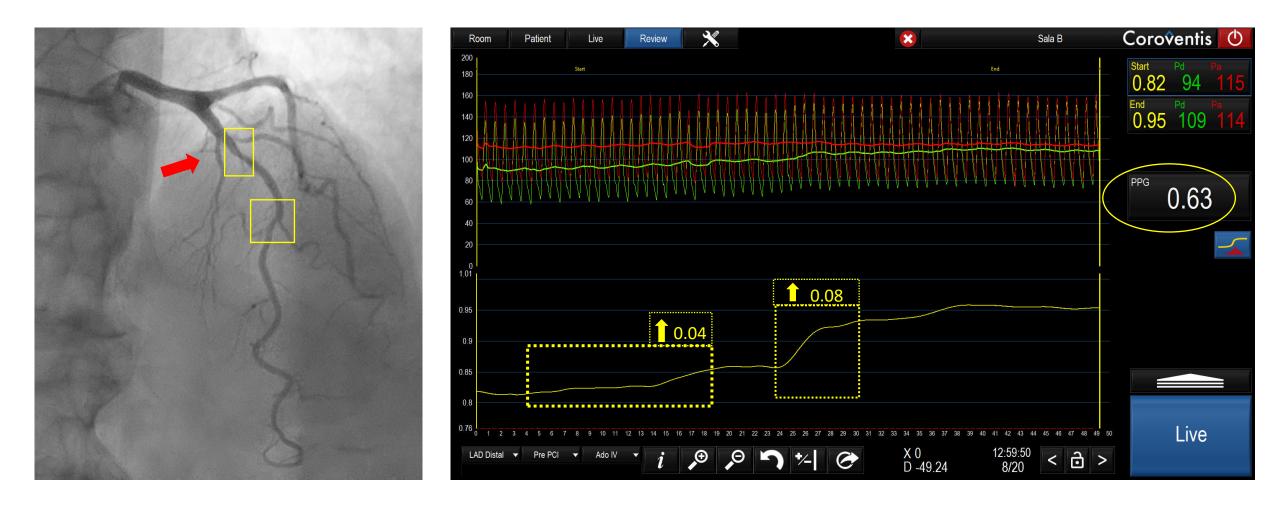
• NHPR/cFFR/IMR/CFR/FFR -> perform pullback

Epicardial disease assessment


FFR

RFR

Epicardial disease assessment


The importance of pullback

Clinical case: Epicardial disease assessment

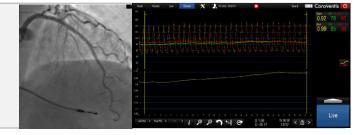
What is #FullPhysiology assessment

- NHPR (≤0.89)
- cFFR (≤0.83)
- FFR (≤0.80) -> perform pullback

- IMR (>25)
- CFR (< 2.0)
- RRR (<2.0)*

*Resistive resistance ratio= $\frac{Trm*Pdr}{Thm*Pdh}$

Vasomotor testing


• Ach

3

Post PCI Full Physiology assessment if applicable

• NHPR/cFFR/IMR/CFR/FFR -> perform pullback

C Two types of CMD. Both are bad

		Systemic Vasculature		Myocardium					
	Mechanism	Nitric Oxide Synthase Activity	Acetylcholine Dilatation	Exercise Blood Pressure	NT-proBNP	Exercise Coronary Perfusion Efficiency	Inducible Ischemia		
Reference Group (n = 40)	O → O High vascular Low vascular tone at rest tone at stress	Normal	Normal	Normal	34 pgml -1	65%	22%	CFR>2 IMR<25	Normal
Functional CMD (n = 28)	O→O Low vascular tone at rest	Increased	Normal	Normal	69 pgml-1	46%	77%	CFR<2 IMR<25	Impaired Vasodilation
Structural CMD (n = 18)	O → O High vascular High vascular tone at rest tone at stress	Increased	Reduced	High	132 pgml-1	41%	88%	CFR<2 IMR≥25	Abnormal MV resistance

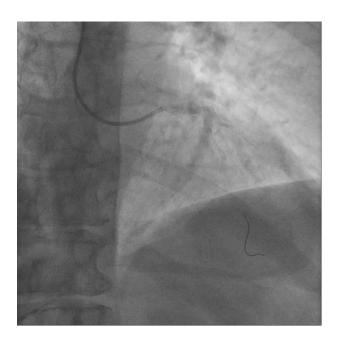
Rahman H et al. JACC 2020;75:2538–2549. COVADIS criteria

What is #FullPhysiology assessment

- NHPR (≤0.89)
- cFFR (≤0.83)
- FFR (≤0.80) -> perform pullback

Microvascular disease assessment IMR (>25) CFR (< 2.0)</p> RRR (<2.0)*</p> *Resistive resistance ratio = Trm+Pdr Thm+Pdh Vasomotor testing • Ach Post PCI Full Physiology assessment if applicable • NHPR/cFFR/IMR/CFR/FFR -> perform pullback


Objective Diagnosis according to COVADIS definitions


Vasospastic angina

J. F. Beltrame et al., Eur Heart J 38, 2565 (2017)

Vasospastic	Epicardial	Angina symptoms during ACh bolus (e.g. 100 µg acetylcholine over 20
angina	spasm	seconds) AND:

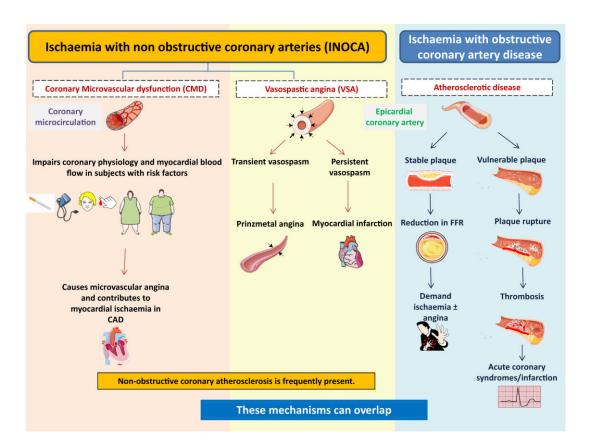
- ST-segment deviation on ECG
- >90% epicardial coronary constriction during ACh reduction[34]

Coronary Microvascular Dysfunction

P. Ong et al., Int J Cardiol 250, 16 (2018)

Disorder	Symptoms	Clinical measurement
Microvascular angina	Abnormal microvascular resistance	 IMR ≥25[<u>27</u>] Hyperaemic microvascular resistance ≥2.5 mmHg/cm/s[<u>28</u>]
	Impaired coronary vasorelaxation	• CFR by thermodilution <2.0[25]
	Microvascular spasm	Angina symptoms with ACh infusion AND: ST-segment deviation on ECG

• No significant epicardial coronary spasm (<90% diameter reduction)



Terminology: A continuum of Angina Endotypes on CCS

- **Obstructive Epicardial CAD**
 - NHPR ≤ 0.89 and/or cFFR ≤ 0.83 and/or FFR ≤ 0.80
- 2 Microvascular angina
 - Structural: IMR >25
 - Functional*: CFR < 2.0 (+ FFR>0.80 and IMR ≤25)
- **3** Vasospastic angina angina + ST changes and

5

- angina + ST changes and >90% epicardial spasm
- Mixed Angina combination of 1, 2 and 3
- Non cardiac pain exclusion of 1-2-3

Kunadian EHJ 2020 (mod) *+MV spasm: angina + ST changes and no epicardial spasm (+ 个Tmn) by COVADIS definition

What is #FullPhysiology assessment

Epicardial disease assessment

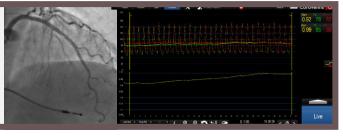
- NHPR (≤0.89)
- cFFR (≤0.83)
- FFR (≤0.80) -> perform pullback

Microvascular disease assessment

- IMR (>25)
- CFR (< 2.0)
- RRR (<2.0)*

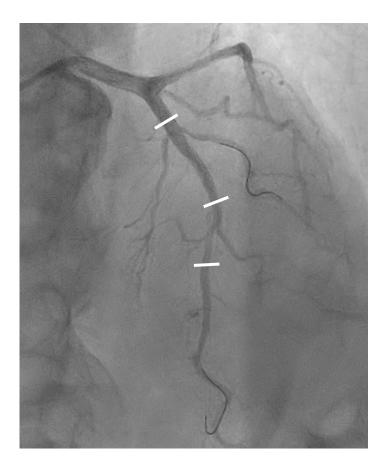
*Resistive resistance ratio= $\frac{Trm*Pdr}{Thm*Pdh}$

Vasomotor testing

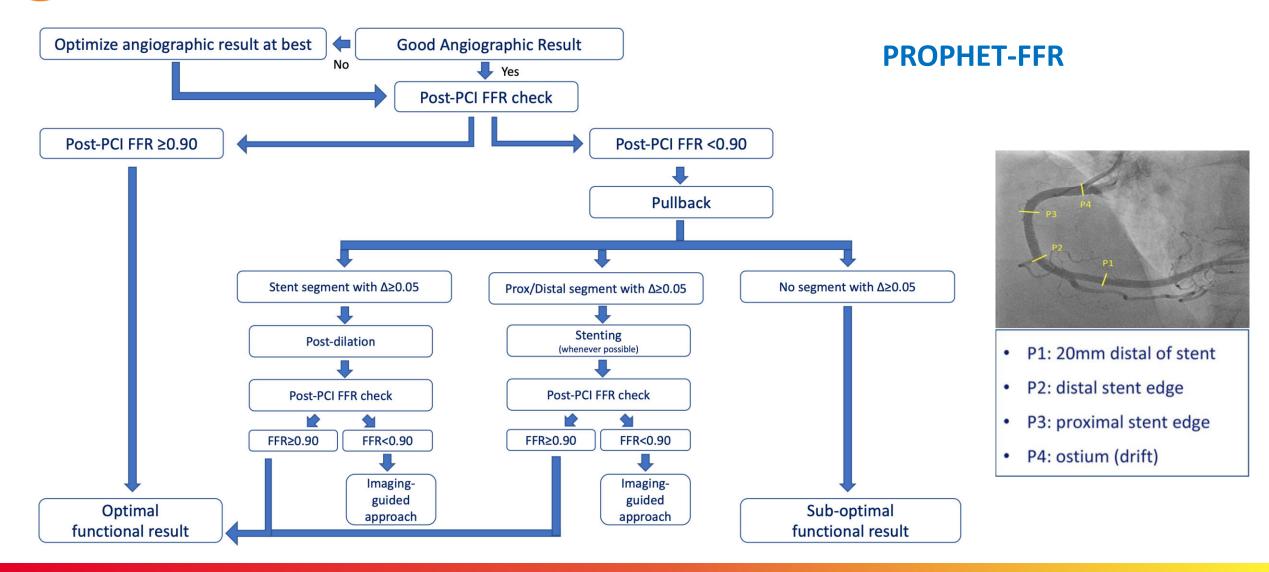

• Ach

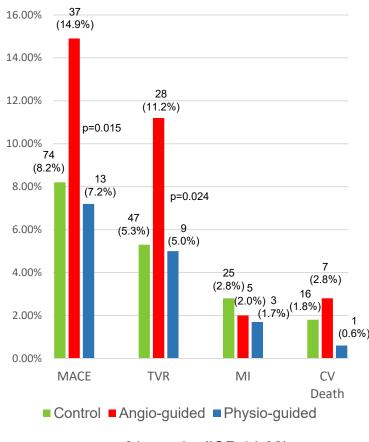
3

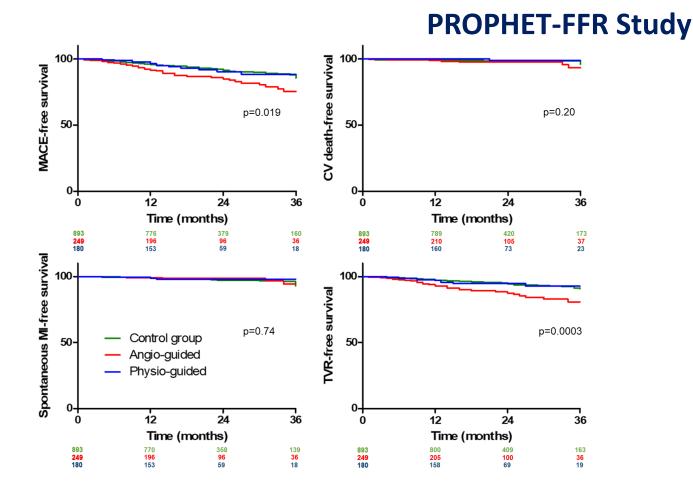
Post PCI Full Physiology assessment if applicable


• NHPR/cFFR/IMR/CFR/FFR -> perform pullback




Oullback assessment in hyperemia post PCI


How to manage an unsatisfactory post-PCI FFR

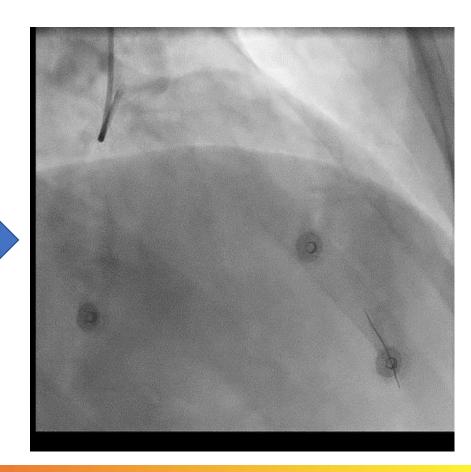

Zimbardo "The Hard truth" Panminerva 2020

Importance of post PCI physiology

21 months (IQR 14-32)

Leone LBT EuroPCR 2022 Leone Frontiers Cardiovasc Med 2022

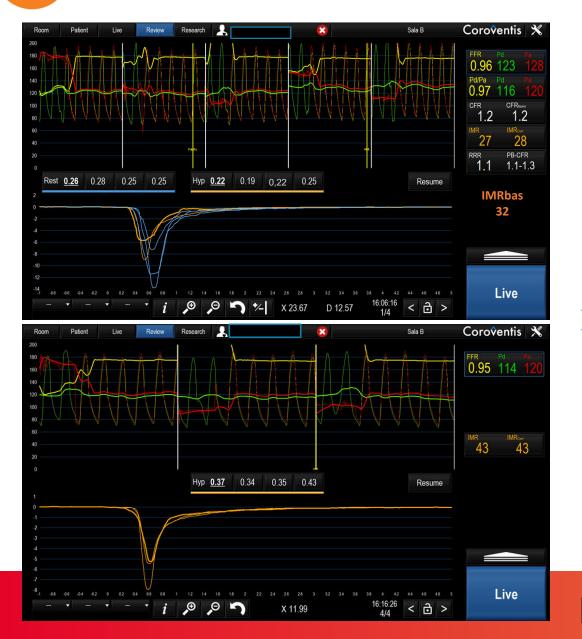
Recommendation	Class	Evidence
Lesion deferral using only a single NHPR	Ш	С
Assessment of microcirculation (CFR, IMR, RRR etc) and vasoreactivity testing in non- obstructive lesions assessed physiologically (FFR>0.80 a/o NHPR>0.89 a/o cFFR>0.88)	Ι	А
Vasoreactivity testing using Ach without invasive physiological assessment	Ш	С
Pullback manoeuvre in physiologically significant lesions (FFR≤0.80 a/o NHPR≤0.89 a/o cFFR≤0.83)	I	А
Pullback Pressure Gradient (PPG) index to quantify disease diffuseness	lla	А
Physiological re-assessment after PCI in physiologically-indicated lesions treated by PCI	l. I	А
cFFR/NHPR combined approach before and after PCI in physiologically significant lesions	llb	С
Physiology-guided PCI with DCB	llb	В
Physiological assessment with pressure/thermodilution wire during Ach administration	llb	С

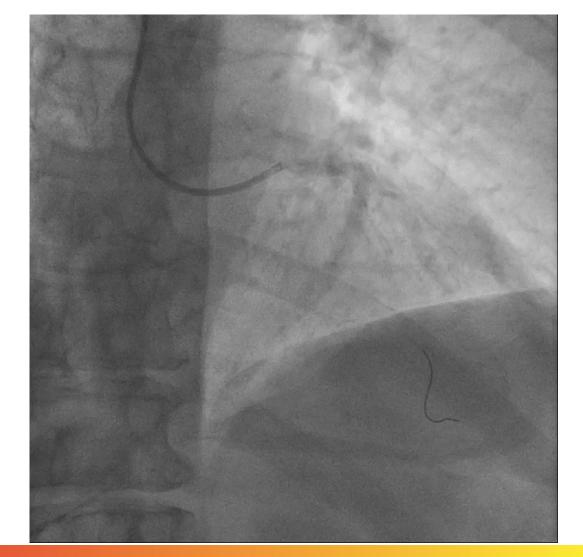


#FullPhysiology 2.0

Invasive Functional demonstration of Epicardial Spasm

- Typical chest pain
- ECG changes: ST segment elevation
- > Epicardial spasm (>90%) with distal occlusion of LAD



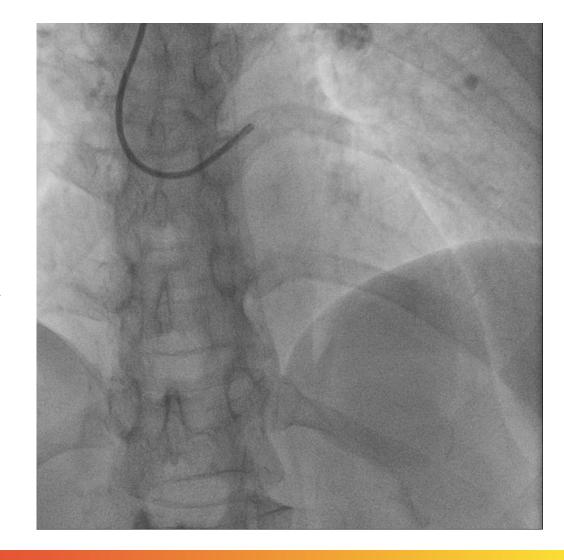


Invasive Functional demonstration > Typical chest pain of Microvascular Spasm

- ECG changes
- NO epicardial spasm \geq

#FullPhysiology 2.0

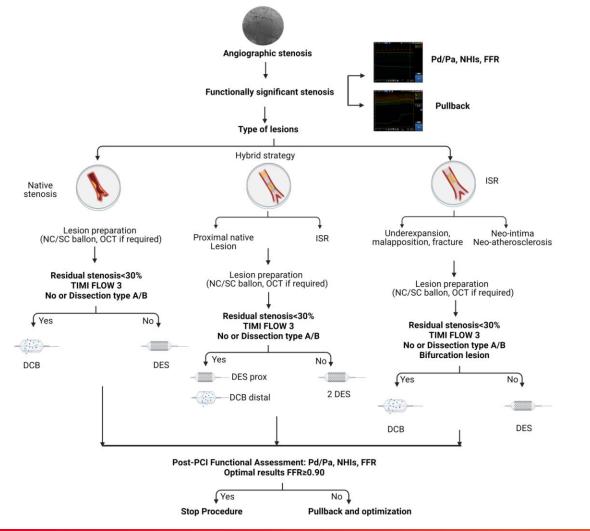
Real Microvascular Spasm



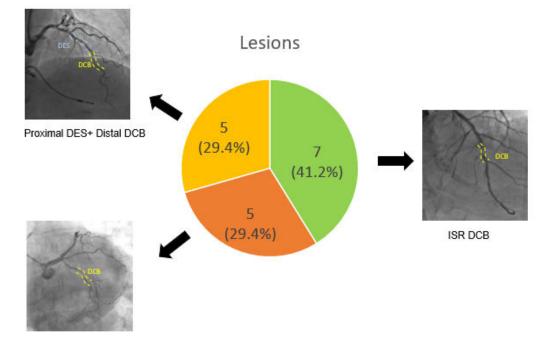
#FullPhysiology 2.0 Invasive Functional dem of Microvascular Spasm

Invasive Functional demonstration > Typical chest pain

- ECG changes
- > NO epicardial spasm



False Microvascular Spasm

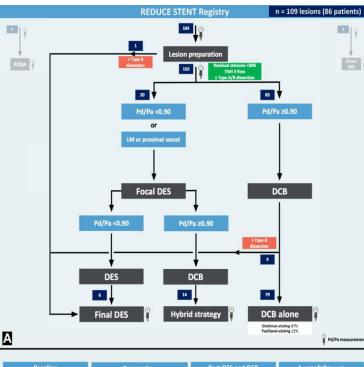

Integration of @Fullphysiology in DCB PCI

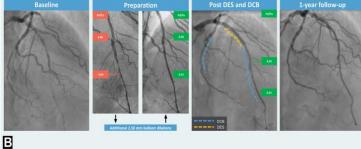
Fondazione Policlinico Universitario A. Gemelli IRCCS-Rome (Italy)

- Data collection period: 2018-2022
- Total DCB-PCI (2018-2021): 398.
- Physiology guided DCB-PCI: 17.

«...utilization of Physiology to optimize an angiographically acceptable DCB-PCI"

De novo lesions DCB




Integration of @Fullphysiology in DCB PCI

Drug-Coated Balloon Angioplasty Guided by Post-Percutaneous **Coronary Intervention Pressure Gradient**

The REDUCE-STENT Retrospective Registry

«...utilization of the distal coronary-to-aortic pressure ratio (Pd/Pa) post–lesion preparation to safely limit stenting when the result is considered angiographically imperfect..."

TVF

	Definite	Probable
Acute	0	0
Subacute	0	1
Late	1	0
Very late	0	1

Target vessel MI	1(0.01%)
TLF	11 (13.2%)
TVR	8 (8.7%)

Median follow-up 246 days (interguartile range 136-400 days)

Conclusions

We have relatively **simple tools** to comprehensively assess coronary circulationin a short time* A correct diagnosis can have important therapeutic and prognostic implications INOCA has an important socio-economic impact and now can be treated appropriately only using an invasive guide using a pressure/thermodilution wire

3

INOCA is a useful model for a variety of clinical settings in which **#FullPhysiology** can make the difference

*Mean procedural time 20±7 minutes from the first NHPR to the end of the test

#Grazie

